Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T14:49:34.061Z Has data issue: false hasContentIssue false

On a random variable related to a system of convex bodies in the Euclidean space En

Published online by Cambridge University Press:  01 July 2016

Marius Stoka*
Affiliation:
Università di Torino
*
Postal address: Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, I 10123 Torino, Italy.

Abstract

Let us consider, in the Euclidean space En, a fixed n-dimensional convex body K0 of volume V0 and a system K1,…,Km of mn-dimensional convex bodies, congruent to a convex set K. Assume that the sets Ki (i = 1,…,m) have random positions, being stochastically independent and uniformly distributed on a limited domain of En and denote by Vm the volume of the convex body Km = K0 ∩ (K1 ∩ … ∩ Km). The aim of this paper is the evaluation of the second moment of the random variable Vm.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chern, S. S. and Yien, Ch. T. (1940). Sulla formula principale cinematica dello spazio ad n dimensioni. Bol. Un. Mat. Italiana 2, 434437.Google Scholar
[2] Hadwiger, H. (1950). Neue Integralrelationen für Eikörperpaare. Acta Scientiarum Mathematicarum 13, 252257.Google Scholar
[3] Santaló, L. A. (1976). Integral Geometry and Geometric Probability. Addison-Wesley.Google Scholar
[4] Stoka, M. I. (1972). Sur quelques variances attachées aux systèmes d'ovales. Pub. Inst. Stat. Univ. Paris XXI 34, 71–76.Google Scholar
[5] Stoka, M. I. (1973–1974). Sur quelques problèmes de géométrie intégrale dans l'espace euclidien En . Atti Accad. Sci. Torino 108, 183193.Google Scholar
[6] Stoka, M. I. (1974). Une extension du problème de l'aiguille de Buffon dans l'espace euclidien Rn . Bol. Un. Mat. Italiana 10, 386389.Google Scholar
[7] Stoka, M. I. (1977). Sur les variances attachées aux quelques familles d'ovaloides dans l'espace R3 . Pub. Inst. Stat. Univ. Paris XXII 3–4, 99105.Google Scholar