Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T14:17:04.852Z Has data issue: false hasContentIssue false

Obituary: Georges Matheron

Published online by Cambridge University Press:  01 July 2016

Dominique Jeulin*
Affiliation:
École des Mines de Paris, Fontainebleau
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The scientific community is saddened to learn of the death of Professor Georges Matheron on 7 August 2000. As a major figure in applied mathematics over four decades, he leaves an outstanding scientific heritage, covering a wide range of domains where probabilistic tools and models are implemented. He also trained more than one generation of researchers, engineers and teachers. In the fields of theoretical and applied random media and image analysis his work has inspired many researchers worldwide: mathematicians, statisticians, physicists, experimentalists, earth scientists, mining engineers and also users of image analysis and synthesis in all its applications (materials, biology, artificial vision, CAD, remote sensing, geophysics, biometry, image coding etc.).

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2000 

References

[1] Matheron, G. (1962). Traité de Géostatistique appliquée, Vol. 1. Éditions Technip, Paris.Google Scholar
[2] Matheron, G. (1963). Traité de Géostatistique appliquée, Vol. 2. Éditions Technip, Paris.Google Scholar
[3] Matheron, G. (1965). Les variables régionalisées et leur estimation. Masson et Cie, Paris.Google Scholar
[4] Matheron, G. (1967). Eléments pour une théorie des milieux poreux. Masson et Cie, Paris.Google Scholar
[5] Matheron, G. (1968). Composition des perméabilités en milieu poreux hétérogéne: critique de la régle de pondération géométrique. Rev. Inst. Français Pétrole 23, 201218.Google Scholar
[6] Matheron, G. (1969). Théorie des Ensembles Aléatoires (Cahiers Centre Morphologie Math. 4). École des Mines de Paris, Fontainebleau.Google Scholar
[7] Matheron, G. (1971). The Theory of Regionalized Variables and its Applications (Cahiers Centre Morphologie Math. 5). École des Mines de Paris, Fontainebleau.Google Scholar
[8] Matheron, G. (1973). The intrinsic random functions and their applications. Adv. Appl. Prob. 5, 439468.CrossRefGoogle Scholar
[9] Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
[10] Matheron, G. (1976). A simple substitute for conditional expectation: the disjunctive kriging. In Advanced Geostatistics in the Mining Industry, eds Guarascio, M., David, M. and Huijbregts, C.. D. Reidel Publishing Company, Dortrecht, pp. 221236.CrossRefGoogle Scholar
[11] Matheron, G. (1978). Estimer et Choisir (Cahiers Centre Morphologie Math. 7). École des Mines de Paris, Fontainebleau.Google Scholar
[12] Matheron, G. (1979). L'émergence de la loi de Darcy. Preprint N-592, Centre Morphologie Math., École des Mines de Paris, Fontainebleau.Google Scholar
[13] Matheron, G. (1984). Isofactorial methods and change of support. In Geostatistics for Natural Resources Characterization (Proc. 2nd NATO Adv. Study Inst., Tahoe, 1983), eds Verly, G. et al. D. Reidel Publishing Company, Dortrecht, pp. 449467.Google Scholar
[14] Matheron, G. (1989). Estimating and Choosing. Springer, Berlin.Google Scholar
[15] Matheron, G. (1990). Les treillis compacts. Preprint N-23/90/G, Centre de Géostatistique, École des Mines de Paris, Fontainebleau.Google Scholar
[16] Matheron, G. (1996). Treillis compacts et treillis coprimaires. Preprint N-5/96/G, Centre de Géostatistique, École des Mines de Paris, Fontainebleau.Google Scholar
[17] Serra, J. (ed.) (1988). Image Analysis and Mathematical Morphology, Vol. 2. Academic Press, London.Google Scholar