Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T19:06:22.267Z Has data issue: false hasContentIssue false

Nonparametric estimation of boundary measures and related functionals: asymptotic results

Published online by Cambridge University Press:  01 July 2016

Inés Armendáriz*
Affiliation:
Universidad de San Andrés and Universidade de São Paulo
Antonio Cuevas*
Affiliation:
Universidad Autónoma de Madrid
Ricardo Fraiman*
Affiliation:
Universidad de San Andrés and Universidad de la República
*
Postal address: Departamento de Matemática y Ciencias, Universidad de San Andrés, Vito Dumas 284 (B1644BID), Buenos Aires, Argentina.
∗∗∗ Postal address: Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain. Email address: [email protected]
Postal address: Departamento de Matemática y Ciencias, Universidad de San Andrés, Vito Dumas 284 (B1644BID), Buenos Aires, Argentina.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study a nonparametric method for estimating the boundary measure of a compact body G ⊂ ℝd (the boundary length when d = 2 and the surface area for d = 3) in the case when this measure agrees with the corresponding Minkowski content. The estimator we consider is closely related to the one proposed in Cuevas, Fraiman and Rodríguez-Casal (2007). Our method relies on two sets of random points, drawn inside and outside the set G, with different sampling intensities. Strong consistency and asymptotic normality are obtained under some shape hypotheses on the set G. Some applications and practical aspects are briefly discussed.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2009 

References

Ambrosio, L., Colesanti, A. and Villa, E. (2008). Outer Minkowski content for some classes of closed sets. Math. Ann. 342, 727748.CrossRefGoogle Scholar
Baddeley, A. J. and Vedel-Jensen, E. B. V. (2005). Stereology for Statisticians (Monogr. Statist. Appl. Prob. 103). Chapman and Hall, Boca Raton, FL.Google Scholar
Baddeley, A. J., Gundersen, H. J. G. and Cruz-Orive, L. M. (1986). Estimation of surface area from vertical sections. J. Microscopy 142, 259276.CrossRefGoogle ScholarPubMed
Bennett, C. L. et al. (2003). First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astro. J. Sup. Ser. 148, 127.CrossRefGoogle Scholar
Bräker, H., Hsingh, T. and Bingham, N. H. (1998). On the Hausdorff distance between a convex set and an interior random convex hull. Adv. Appl. Prob. 30, 295316.CrossRefGoogle Scholar
Carlstein, E. and Krishnamoorthy, C. (1992). Boundary estimation. J. Amer. Statist. Assoc. 87, 430438.CrossRefGoogle Scholar
Cuevas, A. and Rodrı´guez-Casal, A. (2004). On boundary estimation. Adv. Appl. Prob. 36, 340354.CrossRefGoogle Scholar
Cuevas, A., Fraiman, R. and Rodrı´guez-Casal, A. (2007). A nonparametric approach to the estimation of lengths and surface areas. Ann. Statist. 35, 10311051.CrossRefGoogle Scholar
Federer, H. (1959). Curvature measures. Trans. Amer. Math. Soc. 93, 418491.CrossRefGoogle Scholar
Gokhale, A. M. (1990). Unbiased estimation of curve length in 3D using vertical slices. J. Microscopy 159, 133141.CrossRefGoogle Scholar
Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces (Camb. Stud. Adv. Math. 44). Cambridge University Press.CrossRefGoogle Scholar
Molchanov, I. S. (1998). A limit theorem for solutions of inequalities. Scand. J. Statist. 25, 235242.CrossRefGoogle Scholar
Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation. Academic Press, New York.Google Scholar
Pateiro-López, B. and Rodrı´guez-Casal, A. (2008). Length and surface area estimation under smoothness restrictions. Adv. Appl. Prob. 40, 348358.CrossRefGoogle Scholar
Villa, E. (2009). On the outer Minkowski content of sets. To appear in Ann. Mat. Pura Appl.CrossRefGoogle Scholar