Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:44:47.021Z Has data issue: false hasContentIssue false

A martingale approach to strong convergence of the number of records

Published online by Cambridge University Press:  01 July 2016

Raúl Gouet*
Affiliation:
Universidad de Chile
F. Javier López*
Affiliation:
Universidad de Zaragoza
Miguel San Miguel*
Affiliation:
Universidad de Zaragoza
*
Postal address: Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170-3, Correo 3, Santiago, Chile. Email address: [email protected]
∗∗ Postal address: Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Postal address: Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170-3, Correo 3, Santiago, Chile. Email address: [email protected]

Abstract

Let (Xn) be a sequence of independent, identically distributed random variables, with common distribution function F, possibly discontinuous. We use martingale arguments to connect the number of upper records from (Xn) with sums of minima of related random variables. From this relationship we derive a general strong law for the number of records for a wide class of distributions F, including geometric and Poisson.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2001 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ahsanullah, M. (1995). Record Statistics. Nova Science, Commack, NY.Google Scholar
[2] Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1998). Records. John Wiley, New York.Google Scholar
[3] Bai, Z., Hwang, H. and Liang, W. (1998). Normal approximation of the number of records in geometrically distributed random variables. Random Structures Algorithms 13, 319334.Google Scholar
[4] Balakrishnan, N. and Nevzorov, V. B. (1998). A record of records. In Handbook of Statistics, Vol. 16, Order Statistics: Theory and Methods, eds Balakrishnan, N. and Rao, C. R., Elsevier, Amsterdam, pp. 515570.Google Scholar
[5] Ballerini, R. and Resnick, S. (1985). Records from improving populations. J. Appl. Prob. 22, 487502.Google Scholar
[6] Berred, M. (1992). On record values and the exponent of a distribution with regularly varying upper tail. J. Appl. Prob. 29, 575586.Google Scholar
[7] Deheuvels, P. (1974). Valeurs extrémales d'échantillons croissants d'une variable aléatoire réelle. Ann. Inst. H. Poincaré B 10, 89114.Google Scholar
[8] Deheuvels, P. and Nevzorov, V. B. (1998). Records in the Fα-scheme. II. Limit theorems. J. Math. Sci. 88, 2935.CrossRefGoogle Scholar
[9] Dziubdziela, W. and Kopocinski, B. (1976). Limit properties of the kth record values. Appl. Math. 15, 187190.Google Scholar
[10] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events. Springer, Heidelberg.Google Scholar
[11] Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics. John Wiley, New York.Google Scholar
[12] Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44, 423453.Google Scholar
[13] Goldie, C. M. and Maller, R. A. (1996). A point-process approach to almost-sure behaviour of record values and order statistics. Adv. Appl. Prob. 28, 426462.Google Scholar
[14] Gut, A. (1990). Convergence rates for record times and the associated counting process. Stoch. Process. Appl. 36, 135151.Google Scholar
[15] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.Google Scholar
[16] Nayak, S. S. (1984). Almost sure limit points of and the number of boundary crossings related to SLLN and LIL for record times, inter-record times and the number of record values. Stoch. Process. Appl. 17, 167176.CrossRefGoogle Scholar
[17] Neveu, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam.Google Scholar
[18] Nevzorov, V. B. (1987). Records. Theory Prob. Appl. 32, 201228.CrossRefGoogle Scholar
[19] Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.Google Scholar
[20] Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423439.Google Scholar
[21] Vervaat, W. (1973). Limit theorems for records from discrete distributions. Stoch. Process. Appl. 1, 317334.Google Scholar