Published online by Cambridge University Press: 01 July 2016
The process of choosing a random triangle inside a compact convex region, K, may be iterated when K itself is a triangle. In this way successive generations of random triangles are created. Properties of scale, location and orientation are filtered out, leaving only the shapes of the triangles as the objects of study. Various simulation investigations indicate quite clearly that, as n increases, the nth-generation triangle shape converges to collinearity. In this paper we attempt to establish such convergence; our results fall slightly short of a complete proof.