Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T07:48:47.576Z Has data issue: false hasContentIssue false

Limit theorems for some continuous-time random walks

Published online by Cambridge University Press:  01 July 2016

M. Jara*
Affiliation:
Université de Paris Dauphine and Instituto de Matématica Pura e Aplicada
T. Komorowski*
Affiliation:
Uniwersytet Marii Curie-Skłodowskiej and Polish Academy of Sciences
*
Postal address: CEREMADE, UMR CNRS 7534, Université de Paris Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France. Email address: [email protected]
∗∗ Postal address: Institute of Mathematics, Uniwersytet Marii Curie-Skłodowskiej, pl. Marii Curie-Skłodowskiej 1, Lublin 20-031, Poland. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider the scaled limit of a continuous-time random walk (CTRW) based on a Markov chain {Xn, n ≥ 0} and two observables, τ(∙) and V(∙), corresponding to the renewal times and jump sizes. Assuming that these observables belong to the domains of attraction of some stable laws, we give sufficient conditions on the chain that guarantee the existence of the scaled limits for CTRWs. An application of the results to a process that arises in quantum transport theory is provided. The results obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where {Xn, n ≥ 0} is a sequence of independent and identically distributed random variables.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2011 

References

Athreya, K. B. (1986). Darling and Kac Revisited. Sankhyā A 48, 255266.Google Scholar
Becker-Kern, P., Meerschaert, M. M. and Scheffler, H.-P. (2004). Limit theorems for coupled continuous time random walks. Ann. Prob. 32, 730756,CrossRefGoogle Scholar
Becker-Kern, P., Meerschaert, M. M. and Scheffler, H.-P. (2011). Correction to ‘Limit theorem for coupled continuous time random walks’. To appear in Ann. Prob. Available at http://www.imstat.org/aop/future_papers.htm.Google Scholar
Benson, D., Wheatcraft, S. and Meerschaert, M. (2000). Application of a fractional advection-dispersion equation. Water Resources Res. 36, 14031412.CrossRefGoogle Scholar
Benson, D., Wheatcraft, S. and Meerschaert, M. (2000). The fractional-order governing equation of Lévy motion. Water Resources Res. 36, 14131424.CrossRefGoogle Scholar
Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York.CrossRefGoogle Scholar
Breiman, L. (1968). Probability. Addison-Wesley, Reading, MA.Google Scholar
Brown, B. M. and Eagleson, G. K. (1971). Martingale convergence to infinite divisible laws with finite variances. Trans. Amer. Math. Soc. 162, 449453.CrossRefGoogle Scholar
Clark, J., De Roeck, W. and Maes, C. (2009). Diffusive behavior from a quantum master equation. Preprint.Google Scholar
Darling, D. A. and Kac, M. (1957). On occupation times for Markoff processes. Trans. Amer. Math. Soc. 84, 444458.CrossRefGoogle Scholar
Durrett, R. and Resnick, S. I. (1978). Functional limit theorems for dependent variables. Ann. Prob. 6, 829846.CrossRefGoogle Scholar
Foguel, S. R. (1969). The Ergodic Theory of Markov Processes. Van Nostrand Reinhold, New York.Google Scholar
Gorenflo, R. and Mainardi, F. (2003). Fractional diffusion processes: probability distributions and continuous time random walk. In Processes with Long Range Correlations (Lecture Notes Phys. 621), Springer, Berlin, pp. 148166.CrossRefGoogle Scholar
Gorenflo, R., Mainardi, F., Scalas, E. and Raberto, M. (2001). Fractional calculus and continuous-time finance. III. The diffusion limit. In Mathematical Finance (Konstanz, 2000), Birkhäuser, Basel, pp. 171180.CrossRefGoogle Scholar
Harris, T. E. (1956). The existence of stationary measures for certain Markov processes. In Proc. 3rd Berkeley Symp. Mathematical Statist. Prob., Vol. II, University of California Press, Berkeley, pp. 113124.Google Scholar
Höpfner, R. and Löcherbach, E. (2003). Limit theorems for null recurrent Markov processes. Mem. Amer. Math. Soc. 161, 92pp.Google Scholar
Jamison, B. and Orey, S. (1967). Markov chains recurrent in the sense of Harris. Z. Wahrscheinlichkeitsth. 8, 4148.CrossRefGoogle Scholar
Jara, M., Komorowski, T. and Olla, S. (2009). Limit theorems for additive functionals of a Markov chain. Ann. Appl. Prob. 19, 22702300.CrossRefGoogle Scholar
Jurlewicz, A., Kern, P., Meerschaert, M. M. and Scheffler, H.-P. (2010). Oracle continuous time random walks. Preprint. Available at http://www.uni-siegen.de/fb6/src/scheffler/research/octrw2.pdf.Google Scholar
Kolokol'tsov, V. N. (2009). Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics. Theory Prob. Appl. 53, 594609.CrossRefGoogle Scholar
Mainardi, F., Raberto, M., Gorenflo, R. and Scalas, E. (2000). Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica A 287, 468481.CrossRefGoogle Scholar
Meerschaert, M. M. and Scheffler, H.-P. (2008). Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118, 16061633.CrossRefGoogle Scholar
Montroll, E. W. and Weiss, G. H. (1965). Random walks on lattices. II. J. Math. Phys. 6, 167181.CrossRefGoogle Scholar
Rosenblatt, M. (1971). Markov Processes. Structure and Asymptotic Behavior. Springer, New York.CrossRefGoogle Scholar
Sato, K. I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.Google Scholar
Shlesinger, M., Klafter, J. and Wong, Y. M. (1982). Random walks with infinite spatial and temporal moments. J. Statist. Phys. 27, 499512.CrossRefGoogle Scholar
Shlesinger, M. F., Zaslavsky, G. M. and Klafter, J. (1993). Strange kinetics. Nature 363, 3137.CrossRefGoogle Scholar
Straka, P. and Henry, B. I. (2011). Lagging and leading coupled continuous time random walks, renewal times and their Joint limits. Stoch. Process. Appl. 121, 324336.CrossRefGoogle Scholar
Whitt, W. (2002). Stochastic-Process Limits. Springer, New York.CrossRefGoogle Scholar
Zaslavsky, G. M. (2002). Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461580.CrossRefGoogle Scholar