Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Pakes, Anthony G.
1998.
Extreme order statistics on Galton-Watson trees.
Metrika,
Vol. 47,
Issue. 1,
p.
95.
Yanev, George P.
and
Tsokos, Chris P.
2000.
Family size order statistics in branching processes with immigration.
Stochastic Analysis and Applications,
Vol. 18,
Issue. 4,
p.
655.
Rahimov, I.
2001.
APPROXIMATION OF EXCEEDANCE PROCESSES IN LARGE POPULATIONS.
Stochastic Models,
Vol. 17,
Issue. 2,
p.
147.
Pakes, Anthony G.
2003.
Stochastic Processes: Modelling and Simulation.
Vol. 21,
Issue. ,
p.
693.
Афанасьев, Валерий Иванович
and
Afanasyev, Valeriy Ivanovich
2007.
Процесс Гальтона - Ватсона при условии достижения высокого уровня.
Теория вероятностей и ее применения,
Vol. 52,
Issue. 3,
p.
588.
Afanasyev, V. I.
2008.
Galton–Watson Process Attaining a High Level.
Theory of Probability & Its Applications,
Vol. 52,
Issue. 3,
p.
509.
Афанасьев, Валерий Иванович
and
Afanasyev, Valeriy Ivanovich
2010.
Принцип инвариантности для критического процесса Гальтона - Ватсона, достигающего высокого уровня.
Теория вероятностей и ее применения,
Vol. 55,
Issue. 4,
p.
625.
Brázdil, Tomáš
Esparza, Javier
Kiefer, Stefan
and
Luttenberger, Michael
2010.
Automata, Languages and Programming.
Vol. 6199,
Issue. ,
p.
539.
Afanasyev, V. I.
2011.
Invariance Principle for a Critical Galton–Watson Process Attaining a High Level.
Theory of Probability & Its Applications,
Vol. 55,
Issue. 4,
p.
559.
Brázdil, Tomáš
Esparza, Javier
Kiefer, Stefan
and
Luttenberger, Michael
2012.
Space-efficient scheduling of stochastically generated tasks.
Information and Computation,
Vol. 210,
Issue. ,
p.
87.
Afanasyev, Valeriy Ivanovich
2022.
О локальном времени остановленного случайного блуждания, достигающего высокого уровня.
Труды Математического института имени В. А. Стеклова,
Vol. 316,
Issue. ,
p.
11.
Afanasyev, V. I.
2022.
On the Local Time of a Stopped Random Walk Attaining a High Level.
Proceedings of the Steklov Institute of Mathematics,
Vol. 316,
Issue. 1,
p.
5.