Published online by Cambridge University Press: 12 January 2023
The invariant Galton–Watson (IGW) tree measures are a one-parameter family of critical Galton–Watson measures invariant with respect to a large class of tree reduction operations. Such operations include the generalized dynamical pruning (also known as hereditary reduction in a real tree setting) that eliminates descendant subtrees according to the value of an arbitrary subtree function that is monotone nondecreasing with respect to an isometry-induced partial tree order. We show that, under a mild regularity condition, the IGW measures are attractors of arbitrary critical Galton–Watson measures with respect to the generalized dynamical pruning. We also derive the distributions of height, length, and size of the IGW trees.