Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T20:29:45.195Z Has data issue: false hasContentIssue false

Gamma distributions for stationary Poisson flat processes

Published online by Cambridge University Press:  01 July 2016

Volker Baumstark*
Affiliation:
Universität Karlsruhe
Günter Last*
Affiliation:
Universität Karlsruhe
*
Postal address: Institut für Stochastik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany.
Postal address: Institut für Stochastik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider a stationary Poisson process X of k-flats in ℝd with intensity measure Θ and a measurable set S of k-flats depending on F1,…,FnX, x∈ℝd, and X in a specific equivariant way. If (F1,…,Fn,x) is properly sampled (in a ‘typical way’) then Θ(S) has a gamma distribution. This result generalizes and unifies earlier work by Miles (1971), Møller and Zuyev (1996), and Zuyev (1999). As a new example, we will show that the volume of the fundamental region of a typical j-face of a stationary Poisson–Voronoi tessellation is conditionally gamma distributed. This is true in the area-biased and the area-debiased cases. In the first case the shape parameter is not integer valued. As another new example, we will show that the generalized integral-geometric contents of the (area-biased and area-debiased) typical j-face of a Poisson hyperplane tessellation are conditionally gamma distributed. In the isotropic case the contents boil down to the mean breadth of the face.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2009 

References

Baumstark, V. and Last, G. (2007). Some distributional results for Poisson–Voronoi tessellations. Adv. Appl. Prob. 39, 1640.CrossRefGoogle Scholar
Cowan, R. (2006). A more comprehensive complementary theorem for the analysis of Poisson point processes. Adv. Appl. Prob. 38, 581601.CrossRefGoogle Scholar
Cowan, R., Quine, M. and Zuyev, S. (2003). Decomposition of gamma-distributed domains constructed from Poisson point processes. Adv. Appl. Prob. 35, 5669.CrossRefGoogle Scholar
Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Last, G. and Thorisson, H. (2009). Invariant transports of stationary random measures and mass-stationarity. Ann. Prob. 37, 790813.CrossRefGoogle Scholar
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
Mecke, J. (1967). Stationäre zufällige Mass e auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitsth. 9, 3658.CrossRefGoogle Scholar
Miles, R.E. (1971). Poisson flats in Euclidean spaces. II. Homogeneous Poisson flats and complementary theorem. Adv. Appl. Prob. 3, 143.CrossRefGoogle Scholar
Miles, R. E. (1974). A synopsis of ‘Poisson flats in Euclidean spaces’. In Stochastic Geometry, eds Harding, E. F. and Kendall, D. G., John Wiley, New York, pp. 202227.Google Scholar
Miles, R. E. and Maillardet, R. J. (1982). The basic structure of Voronoi and generalized Voronoi polygons. In Essays in Statistical Science (J. Appl. Prob. Spec. Vol. 19A), eds Gani, J. and Hannan, E. J., Applied Probability Trust, Sheffield, pp. 97111.Google Scholar
Møller, J. (1994). Lectures on Random Voronoi Tessellations (Lecture Notes Statist. 87). Springer, New York.CrossRefGoogle Scholar
Møller, J. and Zuyev, S. (1996). Gamma-type results and other related properties of Poisson processes. Adv. Appl. Prob. 28, 662673.CrossRefGoogle Scholar
Muche, L. (2005). The Poisson–Voronoi tessellation: relationships for edges. Adv. Appl. Prob. 37, 279296.CrossRefGoogle Scholar
Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.CrossRefGoogle Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.Google Scholar
Zähle, M. (1982). Random processes of Hausdorff rectifiable closed sets. Math. Nachr. 108, 4972.CrossRefGoogle Scholar
Zuyev, S. (1999). Stopping sets: gamma-type results and hitting properties. Adv. Appl. Prob. 31, 355366.CrossRefGoogle Scholar