Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T21:06:11.422Z Has data issue: false hasContentIssue false

Ergodicity properties of stress release, repairable system and workload models

Published online by Cambridge University Press:  01 July 2016

Günter Last*
Affiliation:
Universität Karlsruhe
*
Postal address: Institut für Mathematische Stochastik, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany. Email address: [email protected]

Abstract

In this paper we derive some of the main ergodicity properties of a class of Markov renewal processes and the associated marked point processes. This class represents a generic model of applied probability and is of importance in earthquake modeling, reliability theory and queueing.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2004 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alsmeyer, G. (1994). On the Markov renewal theorem. Stoch. Process. Appl. 50, 3756.CrossRefGoogle Scholar
[2] Asmussen, S. (2003). Applied Probability and Queues. Springer, New York.Google Scholar
[3] Baccelli, F. and Brémaud, P. (1994). Elements of Queueing Theory. Springer, Berlin.Google Scholar
[4] Block, H. W., Borges, W. S. and Savits, T. H. (1985). Age-dependent minimal repair. J. Appl. Prob. 22, 370385.Google Scholar
[5] Borovkov, A. A. (1998). Ergodicity and Stability of Stochastic Processes. John Wiley, Chichester.Google Scholar
[6] Borovkov, K. and Vere-Jones, D. (2000). Explicit formulae for stationary distributions of stress release processes. J. Appl. Prob. 37, 315321.Google Scholar
[7] Browne, S. and Sigman, K. (1992). Work-modulated queues with applications to storage processes. J. Appl. Prob. 29, 699712.Google Scholar
[8] Dai, J. and Meyn, S. P. (1995). Stability and convergence of moments for multiclass queueing networks via fluid limit models. IEEE Trans. Automatic Control 40, 18891904.Google Scholar
[9] Davis, M. H. A. (1993). Markov Models and Optimization. Chapman and Hall, London.CrossRefGoogle Scholar
[10] Dorado, C., Hollander, M. and Sethuraman, J. (1997). Nonparametric estimation for a general repair model. Ann. Statist. 25, 11401160.CrossRefGoogle Scholar
[11] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. John Wiley, New York.Google Scholar
[12] Fayolle, G., Malyshev, V. A. and Menshikov, M. V. (1995). Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press.CrossRefGoogle Scholar
[13] Harrison, J. M. and Resnick, S. I. (1976). The stationary distribution and first exit probabilities of a storage process with general release rule. Math. Operat. Res. 1, 347358.Google Scholar
[14] Kijima, M. (1989). Some results for repairable systems. J. Appl. Prob. 26, 89102.CrossRefGoogle Scholar
[15] Konstantopoulos, T. and Last, G. (1999). On the use of Lyapunov function methods in renewal theory. Stoch. Process. Appl. 79, 165178.Google Scholar
[16] Last, G. and Brandt, A. (1995). Marked Point Processes on the Real Line. Springer, New York.Google Scholar
[17] Last, G. and Szekli, R. (1998). Stochastic comparison of repairable systems. J. Appl. Prob. 35, 348370.CrossRefGoogle Scholar
[18] Last, G. and Szekli, R. (1998). Asymptotic and monotonicity properties of some repairable systems. Adv. Appl. Prob. 30, 10891110.Google Scholar
[19] Last, G. and Szekli, R. (1999). On Palm and time stationarity of repairable systems. Stoch. Process. Appl. 79, 1743.CrossRefGoogle Scholar
[20] Last, G. and Szekli, R. (2001). Moments and Blackwell's convergence for repairable systems with heavy tailed lifetimes. Markov Process. Relat. Fields 7, 469490.Google Scholar
[21] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.Google Scholar
[22] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv. Appl. Prob. 25, 487517.Google Scholar
[23] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes. III. Foster–Lyapunov criteria for continuous-time processes Adv. Appl. Prob. 25, 518548.Google Scholar
[24] Tuominen, P. and Tweedie, R. L. (1993). Subgeometric rates of convergence of f-ergodic Markov chains. Adv. Appl. Prob. 26, 775–598.Google Scholar
[25] Vere-Jones, D. (1978). Earthquake predicition—a statistician's view. J. Phys. Earth 26, 129146.CrossRefGoogle Scholar
[26] Vere-Jones, D. (1988). On the variance properties of stress release models. Austral. J. Statist. 30A, 123135.CrossRefGoogle Scholar
[27] Vere-Jones, D. and Ogata, Y. (1984). On the moments of a self-correcting process. J. Appl. Prob. 21, 335342.Google Scholar
[28] Zheng, X. (1991). Ergodic theorems for stress release processes. Stoch. Process. Appl. 37, 239258.Google Scholar