Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T20:32:45.409Z Has data issue: false hasContentIssue false

Ensembles fermés aléatoires, ensembles semi-markoviens et polyèdres poissoniens

Published online by Cambridge University Press:  01 July 2016

G. Matheron*
Affiliation:
Centre de Morphologie Mathématique, Fontainebleau

Abstract

Random set theory is closely connected with integral geometry. After a general description, based upon the Choquet theorem, the semi-Markovian property is defined and characterized in terms of integral geometry. Applications are made to Poisson polytopes characterized by conditional invariance properties.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1972 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

[1] Bourbaki, N. (1965) Eléments de Mathématiques, Fasc. XIII, Intégration. Hermann, Paris.Google Scholar
[2] Choquet, G. (1953–54) Theory of capacities. Ann. Inst. Fourier (Grenoble) V, 131295.Google Scholar
[3] Delfiner, P. (1971) A generalization of the concept of size. 3rd Int. Cong. for Stereology, Berne. (A paraître).Google Scholar
[4] Hadwiger, H. (1957) Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin.Google Scholar
[5] Kendall, M. G. et Moran, P. A. P. (1963) Geometrical Probability. Hafner, New York.Google Scholar
[6] Matheron, G. (1967) Eléments pour une Théorie des Milieux Poreux. Masson, Paris.Google Scholar
[7] Matheron, G. (1969) Théorie des Ensembles Aléatoires. Cahiers du Centre de Morphologie Mathématique, Fontainebleau. Fasc. 4.Google Scholar
[8] Matheron, G. (1971) Random sets theory, and its applications to stereology. 3rd Int. Cong. for Stereology, Berne. (A paraître).Google Scholar
[9] Matheron, G. (1971) Les polyèdres poissoniens isotropes. 3ème Symposium Européen sur la Fragmentation, Cannes. (A paraître).Google Scholar
[10] Miles, R. E. (1964) Random polygons determined by random lines in a plane. Proc. Nat. Acad. Sci. USA, 52, 901907; II 1157–1160.CrossRefGoogle ScholarPubMed
[11] Miles, R. E. (1969) Poisson flats in euclidean space. Adv. Appl. Prob. 1, 211237.Google Scholar
[12] Miles, R. E. (1970) A synopsis of Poisson flats in euclidean spaces. Izv. Akad. Nauk Armjan. SSR 3, 263285.Google Scholar
[13] Miles, R. E. (1971) Poisson flats in euclidean space, Part II. Adv. Appl. Prob. 3, 143.CrossRefGoogle Scholar
[14] Neveu, J., (1964) Bases Mathématiques du Calcul des Probabilités. Masson, Paris.Google Scholar
[15] Serra, J. (1967) But et réalisation de l'analyseur de textures. Revue de l'Industrie Minérale 49, 933.Google Scholar
[16] Serra, J. (1969) Introduction à la Morphologie Mathématique. Cahiers du Centre de Morphologie Mathématique, Fontainebleau Fasc. 3.Google Scholar