Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T23:16:31.907Z Has data issue: false hasContentIssue false

Domain of attraction of quasi-stationary distributions for the brownian motion with drift

Published online by Cambridge University Press:  01 July 2016

Servet Martinez*
Affiliation:
Universidad de Chile
Pierre Picco*
Affiliation:
CPT CNRS Luminy
Jaime San Martin*
Affiliation:
Universidad de Chile
*
Postal address: Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170, Correo3, Santiago 3, Chile.
∗∗ Postal address: CPT CNRS Luminy, Case 907, 13288, Marseille, Cedex 9, France.
Postal address: Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170, Correo3, Santiago 3, Chile.

Abstract

We consider Brownian motion with a negative drift conditioned to stay positive. We give a sufficient condition for an initial measure to be in the domain of attraction of a quasi-stationary distribution. We construct a counter-example that strongly suggests that this condition is optimal.

MSC classification

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Brown, L. D. (1986). Fundamentals of statistical exponential families. IMS Lecture Notes 9.Google Scholar
[2] Cavender, J. A. (1978). Quasi-stationary distributions of birth and death processes. Adv. Appl. Prob. 10, 570586.Google Scholar
[3] Collet, P., Martínez, S. and San Martín, J. (1995). Asymptotics laws for one-dimensional diffusions conditioned to nonabsorption. Ann. Prob. 23, 13001314.CrossRefGoogle Scholar
[4] Darroch, J. N. and Seneta, E. (1974). On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J. Appl. Prob. 2, 88100.Google Scholar
[5] Ferrari, P. A., Kesten, H., Martínez, S. and Picco, P. (1995). Existence of quasi-stationary distributions. A renewal dynamical approach. Ann. Prob. 23, 501521.Google Scholar
[6] Ferrari, P. A., Martínez, S. and Picco, P. (1991). Some properties of quasi-stationary distributions in the birth and death chains: a dynamical approach. Instabilities and non-equilibrium structures III. Kluwer, 177187.Google Scholar
[7] Ferrari, P. A., Martínez, S. and Picco, P. (1992). Existence of non trivial quasi-stationary distributions in the birth and death chain. Adv. Appl. Prob. 24, 795813.Google Scholar
[8] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd edn. GTM 113, Springer, New York.Google Scholar
[9] Kingman, J. F. C. (1963). The exponential decay of Markov transition probabilities. Proc. London Math. Soc. 13, 337358.CrossRefGoogle Scholar
[10] Martínez, S. and San Martín, J., (1994). Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Prob. 31, 911920.CrossRefGoogle Scholar
[11] Seneta, E. (1966). Quasi-stationary behavior in the random walk with continuous time. Austral. J. Statist. 8, 9298.Google Scholar
[12] Seneta, E. and Vere-Jones, D. (1966). On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. J. Appl. Prob. 3, 403434.CrossRefGoogle Scholar
[13] Van Doorn, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth and death processes. Adv. Appl. Prob. 23, 683700.Google Scholar
[14] Van Doorn, E. A. and Schrijner, P. (1995). Ratio limits and limiting conditional distributions for discrete-time birth-death processes. J. Math. Analysis Appl. 190, 263284.CrossRefGoogle Scholar
[15] Van Doorn, E. A. and Schrijner, P. (1996). Geometric ergodicity and quasi-stationarity in discrete-time birth-death processes. J. Austral. Math. Soc. B, 37, 121144.CrossRefGoogle Scholar
[16] Vere-Jones, D. (1962). Geometric ergodicity in denumerable Markov chains. Q. J. Math. Oxford Ser. 2 13, 728.Google Scholar