Article contents
Distinguished exchangeable coalescents and generalized Fleming-Viot processes with immigration
Published online by Cambridge University Press: 01 July 2016
Abstract
Coalescents with multiple collisions (also called Λ-coalescents or simple exchangeable coalescents) are used as models of genealogies. We study a new class of Markovian coalescent processes connected to a population model with immigration. Consider an infinite population with immigration labelled at each generation by N := {1, 2, …}. Some ancestral lineages cannot be followed backwards after some time because their ancestor is outside the population. The individuals with an immigrant ancestor constitute a distinguished family and we define exchangeable distinguished coalescent processes as a model for genealogy with immigration, focusing on simple distinguished coalescents, i.e. such that when a coagulation occurs all the blocks involved merge as a single block. These processes are characterized by two finite measures on [0, 1] denoted by M = (Λ0, Λ1). We call them M-coalescents. We show by martingale arguments that the condition of coming down from infinity for the M-coalescent coincides with that obtained by Schweinsberg for the Λ-coalescent. In the same vein as Bertoin and Le Gall, M-coalescents are associated with some stochastic flows. The superprocess embedded can be viewed as a generalized Fleming-Viot process with immigration. The measures Λ0 and Λ1 respectively specify the reproduction and the immigration. The coming down from infinity of the M-coalescent will be interpreted as the initial types extinction: after a certain time all individuals are immigrant children.
Keywords
MSC classification
- Type
- General Applied Probability
- Information
- Copyright
- Copyright © Applied Probability Trust 2011
References
- 7
- Cited by