Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T04:45:31.838Z Has data issue: false hasContentIssue false

Disparity of clustering coefficients in the Holme‒Kim network model

Published online by Cambridge University Press:  16 November 2018

R. I. Oliveira*
Affiliation:
IMPA
R. Ribeiro*
Affiliation:
Universidade Federal de Minas Gerais
R. Sanchis*
Affiliation:
Universidade Federal de Minas Gerais
*
* Postal address: IMPA, Estrada Da. Castorina, 110 CEP 22460-320 Rio de Janeiro, RJ, Brazil. Email address: [email protected]
** Postal address: Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627 C.P. 702 CEP 30123-970 Belo Horizonte-MG, Brazil.
** Postal address: Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627 C.P. 702 CEP 30123-970 Belo Horizonte-MG, Brazil.

Abstract

The Holme‒Kim random graph process is a variant of the Barabási‒Álbert scale-free graph that was designed to exhibit clustering. In this paper we show that whether the model does indeed exhibit clustering depends on how we define the clustering coefficient. In fact, we find that the local clustering coefficient typically remains positive whereas global clustering tends to 0 at a slow rate. These and other results are proven via martingale techniques, such as Freedman's concentration inequality combined with a bootstrapping argument.

Type
Original Article
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barabási, A.-L. and Álbert, R. (1999). Emergence of scaling in random networks. Science 286, 509512.Google Scholar
[2]Bollobás, B. (2001). Random Graphs, 2nd edn. Cambridge University Press.Google Scholar
[3]Bollobás, B. and Riordan, O. M. (2003). Mathematical results on scale-free random graphs. In Handbook of Graphs and Networks, Wiley-VCH, Weinheim, pp. 134.Google Scholar
[4]Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G. (2001). The degree sequence of a scale-free random graph process. Random Structures Algorithms 18, 279290.Google Scholar
[5]Buckley, P. G. and Osthus, D. (2004). Popularity based random graph models leading to a scale-free degree sequence. Discrete Math. 282, 5368.Google Scholar
[6]Chung, F. and Lu, L. (2006). Complex Graphs and Networks. American Mathematical Society, Providence, RI.Google Scholar
[7]Durrett, R. (2007). Random Graph Dynamics. Cambridge University Press.Google Scholar
[8]Erdős, P. and Rényi, A. (1959). On random graphs. I. Publ. Math. Debrecen 6, 290297.Google Scholar
[9]Freedman, D. A. (1975). On tail probabilities for martingales. Ann. Prob. 3, 100118.Google Scholar
[10]Holme, P. and Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107.Google Scholar
[11]Janson, S., Łuczak, T. and Rucinski, A. (2000). Random Graphs. John Wiley, New York.Google Scholar
[12]Kumar, R., et al. (2000). Stochastic models for the web graph. In Proceedings of the 41st Annual Symposium on the Foundations of Computer Science, IEEE, pp. 5765.Google Scholar
[13]Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press.Google Scholar
[14]Ostroumova, L., Ryabchenko, A. and Samosvat, E. (2013). Generalized preferential attachment: Tunable power-law degree distribution and clustering coefficient. In Algorithms and Models for the Web Graph, Springer, Cham, pp. 185202.Google Scholar
[15]Van der Hofstad, R. (2009). Random graphs and complex networks. Available at http://www.win.tue.nl/~rhofstad/NotesRGCN.html.Google Scholar
[16]Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature 393, 440442.Google Scholar