Article contents
Criticality of the exponential rate of decay for the largest nearest-neighbor link in random geometric graphs
Published online by Cambridge University Press: 01 July 2016
Abstract
Let n points be placed independently in d-dimensional space according to the density f(x) = Ade−λ||x||α, λ, α > 0, x ∈ ℝd, d ≥ 2. Let dn be the longest edge length of the nearest-neighbor graph on these points. We show that (λ−1 log n)1−1/α dn - bn converges weakly to the Gumbel distribution, where bn ∼ ((d − 1)/λα) log log n. We also prove the following strong law for the normalized nearest-neighbor distance d̃n = (λ−1 log n)1−1/α dn/ log log n: (d − 1)/αλ ≤ lim infn→∞d̃n ≤ lim supn→∞d̃n ≤ d/αλ almost surely. Thus, the exponential rate of decay α = 1 is critical, in the sense that, for α > 1, dn → 0, whereas, for α ≤ 1, dn → ∞ almost surely as n → ∞.
Keywords
MSC classification
- Type
- Stochastic Geometry and Statistical Applications
- Information
- Copyright
- Copyright © Applied Probability Trust 2010
Footnotes
Research supported in part by UGC SAP IV and a grant from the DRDO-IISc program on Mathematical Engineering.
References
- 7
- Cited by