Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T11:45:45.764Z Has data issue: false hasContentIssue false

The covariance structure of queues and related processes – a survey of recent work

Published online by Cambridge University Press:  01 July 2016

John F. Reynolds*
Affiliation:
University College, Cardiff

Abstract

This paper surveys recent results on the covariance structure of processes generated by queues and related stochastic processes. The generated processes include the number X(t) of customers at time t, the waiting time Wn of the nth customer and the inter-departure interval Dn, i.e., the interval between departures of the nth and (n+1)th customers. The importance of these results is discussed, particularly in the field of estimation.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1975 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beneš, V. E. (1957) Fluctuations of telephone traffic. Bell Systems Tech. J. 36, 965973.Google Scholar
Beneš, V. E. (1961) The covariance function of a simple trunk group, with applications to traffic measurement. Bell Systems Tech. J. 40, 117148.Google Scholar
Blomqvist, N. (1967) The covariance function of the M/G/1 queuing system. Skand. Aktuarietidskr. 50, 157174.Google Scholar
Blomqvist, N. (1968) Estimation of waiting time parameters in the GI/G/1 queuing system, Part I—general results. Skand. Aktuarietidskr. 51, 178197.Google Scholar
Blomqvist, N. (1969) Estimation of waiting time parameters in the GI/G/1 queuing system, Part II—heavy traffic approximations. Skand. Aktuarietidskr. 52, 125136.Google Scholar
Blomqvist, N. (1970) On the transient behaviour of the GI/G/1 waiting-times. Skand. Aktuarietidskr. 53, 118129.Google Scholar
Blomqvist, N. (1973) Serial correlation in a simple dam process. Operations Res. 21, 966973.Google Scholar
Breny, H. (1961) Non-indépendence et estimation par la méthode de Monte Carlo, un exemple simple. Bull. Soc. Roy. Sci. Liège 30, 247257.Google Scholar
Burke, P. J. (1956) The output of a queuing system. Operations Res. 4, 699704.Google Scholar
Clarke, A. B. (1957) Maximum likelihood estimates in a simple queue. Ann. Math. Statist. 28, 10361040.Google Scholar
Craven, B. D. (1965) Serial dependence of a Markov process. J. Austral Math. Soc. 3, 503512.Google Scholar
Craven, B. D. (1969) Asymptotic correlation in a queue. J. Appl. Prob. 6, 573583.Google Scholar
Craven, B. D. (1973) The spectral density of a Markov process. J. Appl. Prob. 10, 520527.Google Scholar
Daley, D. J. (1968a) Monte Carlo estimation of mean queue size in a stationary GI/M/1 queue. Operations Res. 16, 10021005.Google Scholar
Daley, D. J. (1968b) Stochastically monotone Markov chains. Z. Wahrscheinlichkeitsth. 10, 307317.Google Scholar
Daley, D. J. (1968c) The serial correlation coefficients of waiting times in a stationary single server queue. J. Austral. Math. Soc. 8, 683699.Google Scholar
Daley, D. J. (1968d) The correlation structure of the output process of some single server queuing systems. Ann. Math. Statist. 39, 10071019.Google Scholar
Daley, D. J. (1969) Integral representations of transition probabilities and serial covariances of certain Markov chains. J. Appl. Prob. 6, 648659.Google Scholar
Daley, D. J. (1974) Queueing output processes. Submitted to Adv. Appl. Prob. Google Scholar
Doob, J. L. (1953) Stochastic Processes. John Wiley, New York.Google Scholar
Finch, P. D. (1959) The output process of the queuing system M/G/1. J. R. Statist. Soc. B 21, 375380.Google Scholar
Gafarian, A. V. and Ancker, C. J. (1966) Mean value estimation from digital computer simulation. Operations Res. 14, 2544.Google Scholar
Gebhard, R. F. (1963) A limiting distribution of an estimate of mean queue length. Operations Res. 11, 10001003.CrossRefGoogle Scholar
Jackson, J. R. (1961) Distribution d'échantillonage du temps moyen d'attente dans une file. Bull Soc. Roy. Sci. Liège 30, 243246.Google Scholar
Jenkins, J. H. (1966a) Stationary joint distributions arising in the analysis of the imbedded Markov chain of the M/G/1 queue. J. Appl. Prob. 3, 512520.Google Scholar
Jenkins, J. H. (1966b) On the correlation structure of the departure process of the M/E λ/1 queue. J. R. Statist. Soc. B 28, 336344.Google Scholar
Jenkins, J. H. (1972) The relative efficiency of direct and maximum likelihood estimates of mean waiting time in the simple queue M/M/1. J. Appl. Prob. 9, 396403.Google Scholar
Kendall, D. G. (1951) Some problems in the theory of queues. J. R. Statist. Soc. B 13, 151185.Google Scholar
Kendall, D. G. (1964) Some recent work and further problems in the theory of queues. Teor. Veroyatnost. i Primenen. 9, 315.Google Scholar
King, R. A. (1971) The covariance structure of the departure process for M/G/1 queues with finite waiting lines. J. R. Statist. Soc. B 33, 401405.Google Scholar
Legall, P. (1962) Les Systèmes avec ou Sans Attente et les Processus Stochastiques—Tome I. Dunod, Paris.Google Scholar
Lindley, D. V. (1952) The theory of queues with a single server. Proc. Camb. Phil. Soc. 48, 277289.CrossRefGoogle Scholar
Mirasol, N. M. (1963) The output of an M/G/∞ queueing system is Poisson. Operations Res. 11, 282284.Google Scholar
Morse, P. M. (1955) Stochastic properties of waiting lines. Operations Res. 3, 255261.Google Scholar
Pakes, A. G. (1971a) The correlation coefficients of the queue lengths of some stationary single server queues J. Austral. Math. Soc. 13, 3546.Google Scholar
Pakes, A. G. (1971b) The serial correlation coefficients of waiting times in the stationary GI/M/1 queue. Ann. Math. Statist. 42, 17271734.CrossRefGoogle Scholar
Pakes, A. G. (1973) On dams with Markovian inputs. J. Appl. Prob. 10, 317329.Google Scholar
Phatarfod, R. M. and Mardia, K. V. (1973) Some results for dams with Markovian inputs. J. Appl. Prob. 10, 166180.Google Scholar
Reich, E. (1957) Waiting times when queues are in tandem. Ann. Math. Statist. 23, 768773.Google Scholar
Reynolds, J. F. (1967) On the autocorrelation function of a queue. Proc. A.F.I.R.O. Congress, Nancy, May 1967.Google Scholar
Reynolds, J. F. (1968) On the autocorrelation and spectral functions of queues. J. Appl. Prob. 5, 467475.CrossRefGoogle Scholar
Reynolds, J. F. (1972a) On linearly regressive processes. J. Appl. Prob. 9, 208213.Google Scholar
Reynolds, J. F. (1972b) Asymptotic properties of mean length estimators for finite Markov queues. Operations Res. 20, 5257.CrossRefGoogle Scholar
Reynolds, J. F. (1972c) Some theorems on the covariance structure of Markov chains. J. Appl. Prob. 9, 214218.Google Scholar
Riordan, J. (1951) Telephone traffic time averages. Bell Systems Tech. J. 30, 11291144.Google Scholar
Riordan, J. (1962) Stochastic Service Systems. John Wiley, New York.Google Scholar
Takács, L. (1962) Introduction to the Theory of Queues. Oxford University Press.Google Scholar