Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T18:11:03.808Z Has data issue: false hasContentIssue false

Conditional sampling for spectrally discrete max-stable random fields

Published online by Cambridge University Press:  01 July 2016

Yizao Wang*
Affiliation:
University of Michigan
Stilian A. Stoev*
Affiliation:
University of Michigan
*
Postal address: Department of Statistics, University of Michigan, 439 West Hall, 1085 South University, Ann Arbor, MI 48109-1107, USA.
Postal address: Department of Statistics, University of Michigan, 439 West Hall, 1085 South University, Ann Arbor, MI 48109-1107, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Max-stable random fields play a central role in modeling extreme value phenomena. We obtain an explicit formula for the conditional probability in general max-linear models, which include a large class of max-stable random fields. As a consequence, we develop an algorithm for efficient and exact sampling from the conditional distributions. Our method provides a computational solution to the prediction problem for spectrally discrete max-stable random fields. This work offers new tools and a new perspective to many statistical inference problems for spatial extremes, arising, for example, in meteorology, geology, and environmental applications.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2011 

References

Balkema, A. A. and Resnick, S. I. (1977). Max-infinite divisibility. J. Appl. Prob. 14, 309319.Google Scholar
Buishand, T. A., de Haan, L. and Zhou, C. (2008). On spatial extremes: with application to a rainfall problem. Ann. Appl. Statist. 2, 624642.Google Scholar
Caprara, A., Toth, P. and Fischetti, M. (2000). Algorithms for the set covering problem. Ann. Operat. Res. 98, 353371.Google Scholar
Cooley, D., Nychka, D. and Naveau, P. (2007). Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Statist. Assoc. 102, 824840.Google Scholar
Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes, Vol. II, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Davis, R. A. and Resnick, S. I. (1989). Basic properties and prediction of max-ARMA processes. Adv. Appl. Prob. 21, 781803.Google Scholar
Davis, R. A. and Resnick, S. I. (1993). Prediction of stationary max-stable processes. Ann. Appl. Prob. 3, 497525.CrossRefGoogle Scholar
Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds. J. R. Statist. Soc. B 52, 393442.Google Scholar
De Haan, L. (1978). A characterization of multidimensional extreme-value distributions. Sankhyā A 40, 8588.Google Scholar
De Haan, L. (1984). A spectral representation for max-stable processes. Ann. Prob. 12, 11941204.Google Scholar
De Haan, L. and Ferreira, A. (2006). Extreme Value Theory. Springer, New York.Google Scholar
De Haan, L. and Pereira, T. T. (2006). Spatial extremes: models for the stationary case. Ann. Statist. 34, 146168.Google Scholar
De Haan, L. and Pickands, J. III (1986). Stationary min-stable stochastic processes. Prob. Theory Relat. Fields 72, 477492.CrossRefGoogle Scholar
Furrer, R., Nychka, D. and Sain, S. (2009). Fields: Tools for Spatial Data. R package version 6.01.Google Scholar
Giné, E., Hahn, M. G. and Vatan, P. (1990). Max-infinitely divisible and max-stable sample continuous processes. Prob. Theory Related Fields 87, 139165.Google Scholar
Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated to negative definite functions. Ann. Prob. 37, 20422065.Google Scholar
Naveau, P., Guillou, A., Cooley, D. and Diebolt, J. (2009). Modelling pairwise dependence of maxima in space. Biometrika 96, 117.Google Scholar
R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna, Austria.Google Scholar
Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes (Appl. Prob. Trust 4). Springer, New York.CrossRefGoogle Scholar
Resnick, S. I. (2007). Heavy-Tail Phenomena. Springer, New York.Google Scholar
Resnick, S. I. and Roy, R. (1991). Random USC functions, max-stable processes and continuous choice. Ann. Appl. Prob. 1, 267292.Google Scholar
Schlather, M. (2002). Models for stationary max-stable random fields. Extremes 5, 3344.CrossRefGoogle Scholar
Schlather, M. and Tawn, J. A. (2003). A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90, 139156.Google Scholar
Smith, R. L. (1990). Max–stable processes and spatial extremes. Unpublished manuscript.Google Scholar
Srivastava, S. M. (1998). A Course on Borel Sets (Graduate Texts Math. 180). Springer, New York.Google Scholar
Stoev, S. A. and Taqqu, M. S. (2005). Extremal stochastic integrals: a parallel between max-stable and alpha-stable processes. Extremes 8, 237266.Google Scholar
Wang, Y. (2010). Maxlinear: Conditional Sampling for Max-Linear Models. R package version 1.0.Google Scholar
Wang, Y. and Stoev, S. A. (2010). On the structure and representations of max-stable processes. Adv. Appl. Prob. 42, 855877.Google Scholar