Article contents
Comparison of optimal value and constrained maxima expectations for independent random variables
Published online by Cambridge University Press: 01 July 2016
Abstract
For all uniformly bounded sequences of independent random variables X1, X2, ···, a complete comparison is made between the optimal value V(X1, X2, ···) = sup {EXt:t is an (a.e.) finite stop rule for X1,X2, ···} and , where Mi(X1,X2, ···) is the ith largest order statistic for X1, X2, ··· In particular, for k> 1, the set of ordered pairs {(x, y):x = V(X1, X2, ···) and for some independent random variables X1, X2, ··· taking values in [0, 1]} is precisely the set , where Bk(0) = 0, Bk(1) = 1, and for The result yields sharp, universal inequalities for independent random variables comparing two choice mechanisms, the mortal&s value of the game V(X1, X2, ···) and the prophet&s constrained maxima expectation of the game . Techniques of proof include probability- and convexity-based reductions; calculus-based, multivariate, extremal problem analysis; and limit theorems of Poisson-approximation type. Precise results are also given for finite sequences of independent random variables.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Applied Probability Trust 1986
Footnotes
Supported in part by National Science Foundation Grant DMS-84-01604.
References
- 8
- Cited by