We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Type
Conference on Models of Biological Growth and Spread, Mathematical Theories and Applications, Heidelberg, Federal Republic of Germany, 16–21 July 1979
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
Pólya, G. (1921) Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend der Irrfahrt im Strassennetz. Math. Ann.84, 149–160.Google Scholar
Puri, P. S. (1967) Some limit theorems on branching processes related to development of biological populations. Math. Biosci.1, 77–94.CrossRefGoogle Scholar
Schürger, K. and Tautu, P. (1976a) Markov configuration processes on a lattice. Rev. Roumaine Math. Pures Appl.21, 233–244.Google Scholar
Schürger, K. and Tautu, P. (1976b) A Markovian configuration model for carcinogenesis. Lecture Notes in Biomath.11, 92–108.Google Scholar
Schürger, K. and Tautu, P. (1977) A spatial stochastic model for carcinogenis: A Markov configuration process. Invited paper, 10th European Meeting of Statisticians (Leuven, Belgium).Google Scholar
Schürger, K. and Tautu, P. (1978) Die Simulation eines mathematischen Modells der Krebsentstehung. IBM Nachrichten28, (242), 265–273.Google Scholar
Tautu, P. (1978) Blackening a d-dimensional lattice. Rev. Roumaine Math. Pures Appl.23, 141–152.Google Scholar