Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T17:59:54.936Z Has data issue: false hasContentIssue false

Asymptotic normality for the number of records from general distributions

Published online by Cambridge University Press:  01 July 2016

Raul Gouet*
Affiliation:
Universidad de Chile
F. Javier López*
Affiliation:
Universidad de Zaragoza
Gerardo Sanz*
Affiliation:
Universidad de Zaragoza
*
Postal address: Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, UMI 2807 CNRS, Universidad de Chile, Casilla 170-3, Santiago, Chile. Email address: [email protected]
∗∗ Postal address: Departamento de Métodos Estadí sticos and BIFI, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
∗∗ Postal address: Departamento de Métodos Estadí sticos and BIFI, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide necessary and sufficient conditions for the asymptotic normality of Nn, the number of records among the first n observations from a sequence of independent and identically distributed random variables, with general distribution F. In the case of normality we identify the centering and scaling sequences. Also, we characterize distributions for which the limit is not normal in terms of their discrete and continuous components.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2011 

References

Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1998). Records. John Wiley, New York.CrossRefGoogle Scholar
Bai, Z.-D., Hwang, H.-K. and Liang, W.-Q. (1998). Normal approximations of the number of records in geometrically distributed random variables. Random Structures Algorithms 13, 319334.3.0.CO;2-Y>CrossRefGoogle Scholar
Bunge, J. and Goldie, C. M. (1999). Record sequences and their applications. In Handbook of Statistics 19, eds Shanbhag, D. N. and Rao, C. R., North-Holland, Amsterdam, pp. 277308.Google Scholar
Devroye, L. (1988). Applications of the theory of records in the study of random trees. Acta Informatica 26, 123130.CrossRefGoogle Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events. Springer, Berlin.CrossRefGoogle Scholar
Gouet, R., López, F. J. and Sanz, G. (2005). Central limit theorems for the number of records in discrete models. Adv. Appl. Prob. 37, 781800.CrossRefGoogle Scholar
Kubacki, K. S. and Szynal, D. (1988). On the rate of convergence in a random central limit theorem. Prob. Math. Statist. 9, 95103.Google Scholar
Nevzorov, V. B. (2001). Records. Mathematical Theory (Trans. Math. Monogr. 194). American Mathematical Society, Providence, RI.Google Scholar
Prodinger, H. (1996). Combinatorics of geometrically distributed random variables: left-to-right maxima. Discrete Math. 153, 253270.CrossRefGoogle Scholar
Rényi, A. (1962). Théorie des éléments saillants d'une suite d'observations. Ann. Fac. Sci. Univ. Clermont-Ferrand 8, 713.Google Scholar
Shorrock, R. W. (1972). On record values and record times. J. Appl. Prob. 9, 316326.CrossRefGoogle Scholar
Vervaat, W. (1973). Limit theorems for records from discrete distributions. Stoch. Process. Appl. 1, 317334.CrossRefGoogle Scholar