Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T05:27:34.066Z Has data issue: false hasContentIssue false

Addendum to ‘Isotropic correlation functions on d-dimensional balls’

Published online by Cambridge University Press:  01 July 2016

Tilmann Gneiting*
Affiliation:
University of Washington
*
Postal address: Department of Statistics, Box 354322, University of Washington, Seattle, WA 98195-4322, USA. Email address: [email protected]

Abstract

We discuss necessary and sufficient conditions for power-law and polynomial models to be correlation functions on bounded domains. These results date back to unpublished work by Matheron (1974) and generalize the findings of Gneiting (1999).

MSC classification

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chilès, J.-P. and Delfiner, P. (1999). Geostatistics. Modeling Spatial Uncertainty. John Wiley, New York.CrossRefGoogle Scholar
Gneiting, T. (1999). Isotropic correlation functions on d-dimensional balls. Adv. Appl. Prob. 31, 625631.CrossRefGoogle Scholar
Matheron, G. (1973). The intrinsic random functions and their applications. Adv. Appl. Prob. 5, 439468.CrossRefGoogle Scholar
Matheron, G. (1974). Représentations stationnaires et représentations minimales pour les FAI-k. Note Géostatistique 125, Centre de Géostatistique, Fontainebleau, France.Google Scholar