Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T01:17:11.184Z Has data issue: false hasContentIssue false

The absolute numbers of consanguineous marriages

Published online by Cambridge University Press:  01 July 2016

J. Hajnal*
Affiliation:
London School of Economics

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on mathematical genetics, Liverpool, 5–6 April 1976
Copyright
Copyright © Applied Probability Trust 1976 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bulmer, M. G. (1973) Inbreeding in the Great Tit. Heredity 30, 313325.Google Scholar
Cavalli-Sforza, L. L. and Bodmer, F. (1971) The Genetics of Human Populations. W. H. Freeman, San Francisco.Google Scholar
Dahlberg, G. (1948) Mathematical Methods for Population Genetics. S. Karger, Basel; Interscience Publishers, New York.Google Scholar
Hajnal, J. (1963) Concepts of random mating and the frequency of consanguineous marriages. Proc. R. Soc. Lond. B 159, 125177. Reprinted in Benchmark Papers in Genetics, 3: Demographic Genetics, ed. Weiss, K. M. and Ballonoff, P. A., Dowden, Hutchinson and Ross, Stroudsburg, Pa. (1975).Google Scholar
Jaquard, A. (1970) Structures Génétiques des Populations. Masson, Paris. English translation Springer-Verlag (1974).Google Scholar
MacCluer, J. W. (1974) Avoidance of incest. Genetic and demographic consequences. In Computer Simulation in Human Population Studies, ed. Dyke, B. and MacCluer, J. W., Seminar Press, New York, 197200.Google Scholar
Riordan, J. (1958) An Introduction to Combinatorial Analysis. Wiley, New York.Google Scholar