Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T06:27:41.275Z Has data issue: false hasContentIssue false

Survey of fluctuation theory

Published online by Cambridge University Press:  01 July 2016

E. Sparre Andersen*
Affiliation:
University of Copenhagen

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
I. Invited Review and Research Papers
Copyright
Copyright © Applied Probability Trust 1974 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Andersen, E. S. (1962) The equivalence principle in the theory of fluctuations of sums of random variables. Colloquium on Combinatorial Methods in Probability Theory, Aarhus.Google Scholar
[2] Andersen, E. S. (1967) An algebraic treatment of fluctuations of sums of random variables. Proc. Fifth Berkeley Symp. Math. Statist. Prob. University of California Press.Google Scholar
[3] Baxter, G. (1962) On a generalization of the finite arcsine law. Ann. Math. Statist. 33, 909915.CrossRefGoogle Scholar
[4] Pollaczek, F. (1952) Fonctions caractéristiques de certaines répartitions définies au moyen de la notion d'ordre. Application à la théorie des attentes. Compt. Rend. Acad. Sci. Paris 234, 23342336.Google Scholar
[5] Port, S. C. (1963) An elementary probability approach to fluctuation theory. J. Math. Anal. Appl. 6, 109151.Google Scholar
[6] Spitzer, F. (1965) A combinatorial lemma and its application to probability theory. Trans. Amer. Math. Soc. 82, 323339.Google Scholar
[7] Wendel, J. G. (1960) Order statistics of partial sums. Ann. Math. Statist. 31, 10341044.Google Scholar