Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T05:59:06.938Z Has data issue: false hasContentIssue false

Quelques théorèmes centraux limites pour les processus poissoniens de droites dans le plan

Published online by Cambridge University Press:  01 July 2016

Katy Paroux*
Affiliation:
Université Lyon I
*
Postal address: Laboratoire de Probabilités, Université Claude Bernard Lyon I, Bât. 101, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France. Email address: [email protected]

Abstract

We prove central limit theorems for certain geometrical characteristics of the convex polygons determined by a standard Poisson line process in the plane, such as: the angles at the vertices of the polygons, the empirical mean of the number of vertices and the empirical mean of the perimeter of the polygons.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avram, F. and Bertsimas, D. (1992). On central limit theorems in geometrical probability. Ann. Appl. Prob. 3, 10331046.Google Scholar
Bonnesen, T. and Frenchel, W. (1971). Theorie der Konvexer Körper. Chelsea, New York.Google Scholar
Chow, Y. S. and Teicher, H. (1978). {Probability {Theory: Independance, Interchangeability, Martingales}}. Springer, Berlin.Google Scholar
Cowan, R. (1978). The use of the ergodic theorems in random geometry. Suppl. Adv. Appl. Prob. 10, 4757.CrossRefGoogle Scholar
Cowan, R. (1980). Properties of ergodic random mosaic processes. Math. Nachr. 97, 89102.Google Scholar
Csörgö, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Academic Press, London.Google Scholar
Durrett, R. (1991). Probability: Theory and Examples. Wadsworth & Brooks, CA.Google Scholar
Goldman, A. (1996). Le spectre de certaines mosaïques poissoniennes du plan et l'enveloppe convexe du pont brownien. Prob. Theory Rel. Field. 105, 5783.Google Scholar
Goudsmit, S. (1945). Random distributions of lines in a plane. Rev. Mod. Phys. 17, 321322.Google Scholar
Matheron, G. (1975). Random Sets and Integral Geometry. {Wiley}, New York.Google Scholar
Miles, R. (1964). Random polygons determined by random lines in a plane I. Proc. Natl. Acad. Sci. USA 52, 901907.Google Scholar
Miles, R. (1964). Random polygons determined by random lines in a plane II. Proc. Natl. Acad. Sci. USA 52, 11571160.Google Scholar
Miles, R. (1995). A heuristic proof of a long-standing conjecture of D. G. Kendall concerning the shapes of certain large random polygons. Adv. Appl. Prob. 27, 397417.CrossRefGoogle Scholar
Neveu, J. (1977). Processus ponctuels. {Ecole d'Eté de Probabilités de Saint-Flour VI-1976. Lecture Notes in Mathematics 598. Springer, Berlin.Google Scholar
Paroux, K. (1997). Quelques théorèmes centraux limites pour les mosaïques poissoniennes du plan. C. R. Acad. Sci. Paris, Série I 324, 465469.CrossRefGoogle Scholar
Paroux, K. (1997). Quelques théorèmes centraux limites pour les processus poissoniens de droites dans le plan. Rapport Interne du Laboratoire de Probabilités de l'Université Lyon 1.Google Scholar
Stoyan, D., Kendall, W. and Mecke, J. (1987). Stochastic Geometry and its Applications. {Wiley}, New York.Google Scholar
Tanner, J. (1984). Polygons formed by random lines in a plane: some further results. J. App. Prob. 20, 778787.Google Scholar
Wiener, N. (1939). The ergodic theorem. Duke Math. J. 5, 118.Google Scholar