Published online by Cambridge University Press: 01 July 2016
The focus of this paper is on obtaining a conservative but tight bound on the probability distribution for the strength of a fibrous material. The model is the chain-of-bundles probability model, and local load sharing is assumed for the fiber elements in each bundle. The bound is based upon the occurrence of two or more adjacent broken fiber elements in a bundle. This event is necessary but not sufficient for failure of the material. The bound is far superior to a simple weakest link bound based upon the failure of the weakest fiber element. For large materials, the upper bound is a Weibull distribution, which is consistent with experimental observations. The upper bound is always conservative, but its tightness depends upon the variability in fiber element strength and the volume of the material. In cases where the volume of material and the variability in fiber strength are both small, the bound is believed to be virtually the same as the true distribution function for material strength. Regarding edge effects on composite strength, only when the number of fibers is very small is a correction necessary to reflect the load-sharing irregularities at the edges of the bundle.
Research supported by the U.S. Department of Energy under Contract DE-AC02-76-ER04027.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.