Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T00:35:10.106Z Has data issue: false hasContentIssue false

Poisson flats in Euclidean spaces Part I: A finite number of random uniform flats

Published online by Cambridge University Press:  01 July 2016

R. E. Miles*
Affiliation:
Australian National University

Extract

This is the first part of a three part work, the common setting being Ed, Euclidean space of d dimensions. Many random physical phenomena, often in the form of structures, admit models which are assemblages of random s-flats in Ed. Indeed, taking s = 0, any n-sample from a d-dimensional distribution may of course be so regarded! For static phenomena generally 0 ≦ s < d ≦ 3, while 4 is to be substituted for 3 if time variation is allowed. By postulating a high degree of stochastic independence and uniformity, a variety of “simple” models is defined. However, their investigation poses problems in geometrical probability of a wide range of difficulty; the solutions of many of which are still far from complete.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Birkhoff, G and Maclane, S. (1953) A Survey of Modern Algebra. Macmillan, New York, Revised Edition.Google Scholar
[2] Blaschke, W. (1935) Integralgeometrie 1. Ermittlung der Dichten für lineare Unterraume im E n . Hermann, Paris (Act. Sci. Indust. No. 252).Google Scholar
[3] Blaschke, W. (1949) Vorlesungen über Integralgeometrie. Chelsea, New York.Google Scholar
[4] Bonnesen, T. and Fenchel, W. (1948) Theorie der konvexen Körper. Chelsea, New York.Google Scholar
[5] Busemann, H. (1958) Convex Surfaces. Wiley, New York.Google Scholar
[6] Cesari, L. (1956) Surface Area. Princeton U. P. (Ann. Math. Studies No. 35).Google Scholar
[7] Crofton, M. W. (1868) On the theory of local probability, applied to straight lines drawn at random in a plane; … Philos. Trans. Roy. Soc. 158, 181199.Google Scholar
[8] Crofton, M. W. (1869) Sur quelques théorèmes de calcul intègral. C. R. Acad. Sci. Paris, 68, 14691470.Google Scholar
[9] Deltheil, R. (1926) Probabilités Géométriques. Gauthier-Villars, Paris.Google Scholar
[10] Eggleston, H. G. (1958) Convexity. Cambridge U. P. CrossRefGoogle Scholar
[11] grünbaum, B. (1967) Convex Polytopes. Wiley, New York.Google Scholar
[12] Hadwiger, H. (1950) Neue Integralrelationen für Eikörperpaare. Acta Sci. Math. 13, 252257.Google Scholar
[13] Hadwiger, H. (1957) Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer-Verlag. Google Scholar
[14] Hostinsky, B. (1925) Sur les probabilités géométriques. Publ. Fac. Sci. Univ. Masaryk, Brno, 326.Google Scholar
[15] James, A. T. (1954) Normal multivariate analysis and the orthogonal group. Ann. Math. Statist. 25, 4075.CrossRefGoogle Scholar
[16] Kendall, M. G. (1961) A Course in the Geometry of n Dimensions. Hafner, New York.Google Scholar
[17] Kendall, M. G. and Moran, P. A. P. (1963) Geometrical Probability. Hafner, New York.Google Scholar
[18] Miles, R. E. (1961) Random Polytopes: The Generalisation to n Dimensions of the Intervals of a Poisson process. , Cambridge University.Google Scholar
[19] Miles, R. E. (1964) A wide class of distributions in geometrical probability (abstract). Ann. Math. Statist. 35, 1407.Google Scholar
[20] Miles, R. E. (1964) Random polygons determined by random lines in a plane. Proc. Nat. Acad. Sci. 52, 901907, II. 1157–1160.CrossRefGoogle ScholarPubMed
[21] Miles, R. E. (1965) Contribution to the discussion of Professor Pyke's paper. J. R. Statist. Soc. B 27, 444.Google Scholar
[22] Miles, R. E. On the homogeneous planar Poisson point process. Mathematical Biosciences (to appear).Google Scholar
[23] Santaló, L. A. (1952) Integral geometry in spaces of constant curvature (Spanish. English summary.) Repub. Argentina Publ. Com. Nac. Energia Atomica Ser. Mat. 1, no. 1.Google Scholar
[24] Santaló, L. A. (1953) Introduction to Integral Geometry. Hermann, Paris. (Act. Sci. Indust. No. 1198.) Google Scholar
[25] Santaló, L. A. (1955) Sur la mesure des espaces linéaires qui coupent un corps convexe et problèmes qui s'y rattachent. Colloque sur les questions de réalité en géométrie, Liège, 177190. Georges Thone, Liège; Masson et Cie, Paris.Google Scholar
[26] Santaló, L. A. (1956) On mean curvatures of a flattened convex body. Rev. Fac. Sci. Univ. Istanbul Ser. A 21, 189194.Google Scholar
[27] Sommerville, D. M. Y. (1958) An Introduction to the Geometry of N Dimensions. Dover, New York.Google Scholar
[28] Stoka, M. I. (1967) Geometrie Integrala. Editura Academiei Republicii Socialiste Romania.Google Scholar
[29] Uzawa, Hirofumi (1958) A theorem on convex polyhedral cones. Studies in Linear and Non-linear Programming by Arrow, Hurwicz, Uzawa et alia. Stanford U. P., California, 2331.Google Scholar