Published online by Cambridge University Press: 01 July 2016
We use the fact that the Palm measure of a stationary random measure is invariant to phase space change to generalize the light traffic formula initially obtained for stationary processes on a line to general spaces. This formula gives a first-order expansion for the expectation of a functional of the random measure when its intensity vanishes. This generalization leads to new algorithms for estimating gradients of functionals of geometrical random processes.
The original version of this paper was presented at the International Workshop on Stochastic Geometry, Stereology and Image Analysis held at the Universidad Internacional Mendendez Pelayo, Valencia, Spain, on 21–24 September 1993.