Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T05:50:29.780Z Has data issue: false hasContentIssue false

Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes

Published online by Cambridge University Press:  01 July 2016

Wilfrid S. Kendall*
Affiliation:
University of Warwick
Jesper Møller*
Affiliation:
Aalborg University
*
Postal address: Department of Statistics, University of Warwick, Coventry CV4 7AL, UK. Email address: [email protected]
∗∗ Postal address: Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg, Denmark. Email address: [email protected]

Abstract

In this paper we investigate the application of perfect simulation, in particular Coupling from the Past (CFTP), to the simulation of random point processes. We give a general formulation of the method of dominated CFTP and apply it to the problem of perfect simulation of general locally stable point processes as equilibrium distributions of spatial birth-and-death processes. We then investigate discrete-time Metropolis-Hastings samplers for point processes, and show how a variant which samples systematically from cells can be converted into a perfect version. An application is given to the Strauss point process.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Baddeley, A. J. and Möller, J. (1989). Nearest neighbour Markov point processes and random sets. Int. Statist. Rev. 57, 89121.CrossRefGoogle Scholar
[2] Baddeley, A. J. and van Lieshout, M. N. M. (1995). Area-interaction point processes. Ann. Inst. Statist. Math. 47, 601619.CrossRefGoogle Scholar
[3] Borovkov, A. A. and Foss, S. G. (1992). Stochastically recursive sequences and their generalizations. Siberian Adv. Math. 2, 1681.Google Scholar
[4] Burdzy, K. and Kendall, W. S. (2000). Efficient Markovian couplings: examples and counterexamples. Ann. Appl. Prob. 10, 362409.CrossRefGoogle Scholar
[5] Carter, D. S. and Prenter, P. M. (1972). Exponential spaces and counting processes. Z. Wahrscheinlichkeitsth. 21, 119.CrossRefGoogle Scholar
[6] Clifford, P. and Nicholls, G. (1994). Comparison of birth-and-death and Metropolis–Hastings Markov chain Monte Carlo for the Strauss process. Available at http://www.math.auckland.ac.nz/simnicholls/.Google Scholar
[7] Corcoran, J. N. and Tweedie, R. L. (1997). Perfect sampling of Harris recurrent Markov chains. Unpublished manuscript.Google Scholar
[8] Darling, R. W. R. (1987). Constructing Nonhomeomorphic Stochastic Flows. Mem. Amer. Math. Soc. 70, No. 376.Google Scholar
[9] Fernández, R., Ferrari, P. A. and Garcia, N. L. (1999). Perfect simulation for interacting point processes, loss networks and Ising models. Preprint.Google Scholar
[10] Fill, J. (1998). An interruptible algorithm for exact sampling via Markov chains. Ann. Appl. Prob. 8, 131162.CrossRefGoogle Scholar
[11] Foss, S. G. and Tweedie, R. L. (1998). Perfect simulation and backward coupling. Stoch. Models 14, 187203.CrossRefGoogle Scholar
[12] Geyer, C. J. (1999). Likelihood inference for spatial point processes. Stochastic Geometry: Likelihood and Computation, eds Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M.. Chapman & Hall/CRC, Boca Raton, pp. 79140.Google Scholar
[13] Geyer, C. J. and Möller, J. (1994). Simulation and likelihood inference for spatial point processes. Scand. J. Statist. 21, 359373.Google Scholar
[14] Green, P. J. and Murdoch, D. J. (1999). Exact sampling for Bayesian inference: towards general purpose algorithms. In Bayesian Statistics 6, eds Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M.. Oxford University Press.Google Scholar
[15] Häggström, O. and Steif, J. E. (1999). Propp–Wilson algorithms and finitary codings for high noise Markov random fields. To appear in Combin. Prob. Comput. Google Scholar
[16] Häggström, O., van Lieshout, M. N. M. and Möller, J. (1999). Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes. Bernoulli 5, 641659.Google Scholar
[17] Kelly, F. P. and Ripley, B. D. (1976). A note on Strauss's model for clustering. Biometrika 63, 357360.CrossRefGoogle Scholar
[18] Kendall, W. S. (1997). On some weighted Boolean models. In Advances in Theory and Applications of Random Sets, ed. Jeulin, D.. World Scientific Publishing Company, Singapore, pp. 105120.Google Scholar
[19] Kendall, W. S. (1997). Perfect simulation for spatial point processes. In Proc. ISI 51st session, Istanbul (August 1997), Vol. 3, pp. 163166.Google Scholar
[20] Kendall, W. S. (1998). Perfect simulation for the area-interaction point process. In Probability Towards 2000 eds Accardi, L. and Heyde, C. C.. Springer, New York, pp. 218234.Google Scholar
[21] Kendall, W. S. and Möller, J. (1999). Perfect implementation of a Metropolis–Hastings simulation of Markov point processes. Res. Rept 348, Department of Statistics, University of Warwick.Google Scholar
[22] Kendall, W. S. and Möller, J. (1999). Perfect Metropolis–Hastings simulation of locally stable point processes. Tech. Rept R-99-2001, Department of Mathematical Sciences, Aalborg University, 1999. Available at http://www.statslab.cam.ac.uk/ mcmc/.Google Scholar
[23] Kendall, W. S. and Thönnes, E. (1999). Perfect simulation in stochastic geometry. Pattern Recognition 32, 15691586.Google Scholar
[24] Kendall, W. S., van Lieshout, M. N. M. and Baddeley, A. J. (1999). Quermass-interaction processes: conditions for stability. Adv. Appl. Prob. 31, 315342.Google Scholar
[25] Klein, W. (1982). Potts-model formulation of continuum percolation. Phys. Rev. B, 26, 26772678.CrossRefGoogle Scholar
[26] Lund, R. B. and Wilson, D. B. (1997). Exact sampling algorithms for storage systems. In preparation.Google Scholar
[27] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, New York.Google Scholar
[28] Möller, J., (1989). On the rate of convergence of spatial birth-and-death processes. Ann. Inst. Statist. Math. 41, 565581.Google Scholar
[29] Möller, J., (1994). Discussion contribution. Scand. J. Statist. 21, 346349.Google Scholar
[30] Möller, J. (1999). Markov chain Monte Carlo and spatial point processes. In Stochastic Geometry: Likelihood and Computation, eds Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M.. Chapman & Hall/CRC, Boca Raton, pp. 141172.Google Scholar
[31] Möller, J. and Nicholls, G. (1999). Perfect simulation for sample-based inference. Tech. Rept R-99-2011, Department of Mathematical Sciences, Aalborg University.Google Scholar
[32] Möller, J. and Schladitz, K. (1999). Extensions of Fill's algorithm for perfect simulation. J. R. Statist. Soc. Ser. B 61, 955969.Google Scholar
[33] Möller, J. and Waagepetersen, R. (1998). Markov connected component fields. Adv. Appl. Prob. 30, 135.Google Scholar
[34] Murdoch, D. J. and Green, P. J. (1998). Exact sampling from a continuous state space. Scand. J. Statist. 25, 483502.Google Scholar
[35] Murdoch, D. J. and Rosenthal, J. S. (2000). Efficient use of exact samples. Statist. Comput. 10, 237243.Google Scholar
[36] Preston, C. J. (1977). Spatial birth-and-death processes. Bull. Inst. Int. Statist. 46, 371391.Google Scholar
[37] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms 9, 223252.Google Scholar
[38] Ripley, B. D. (1977). Modelling spatial patterns (with discussion). J. R. Statist. Soc. Ser. B 39, 172212.Google Scholar
[39] Ripley, B. D. and Kelly, F. P. (1977). Markov point processes. J. London Math. Soc. 15, 188192.Google Scholar
[40] Strauss, D. J. (1975). A model for clustering. Biometrika 63, 467475.CrossRefGoogle Scholar
[41] Thönnes, E., (1999). Perfect simulation of some point processes for the impatient user. Adv. Appl. Prob. 31, 6987.Google Scholar
[42] Van den Berg, J. and Steif, J. E. (1999). On the existence and non-existence of finitary codings for a class of random fields. Ann. Prob. 27, 15011522.Google Scholar
[43] Wilson, D. B. (2000). Layered multishift coupling for use in perfect sampling algorithms (with a primer on CFTP). In Monte Carlo Methods, ed. Madras, N. (Fields Institute Communications 26). AMS, Providence, RI, pp. 141176.Google Scholar