Hostname: page-component-55f67697df-px5tt Total loading time: 0 Render date: 2025-05-09T11:05:16.890Z Has data issue: false hasContentIssue false

Optimal stopping of Gauss–Markov bridges

Published online by Cambridge University Press:  04 December 2024

Abel Azze*
Affiliation:
CUNEF Universidad
Bernardo D’Auria*
Affiliation:
University of Padua
Eduardo García-Portugués*
Affiliation:
Universidad Carlos III de Madrid
*
*Postal address: Department of Quantitative Methods, CUNEF Universidad, Spain. Email address: [email protected]
**Postal address: Department of Mathematics, University of Padua, Italy. Email address: [email protected]
***Postal address: Department of Statistics, Universidad Carlos III de Madrid, Spain. Email address: [email protected]

Abstract

We solve the non-discounted, finite-horizon optimal stopping problem of a Gauss–Markov bridge by using a time-space transformation approach. The associated optimal stopping boundary is proved to be Lipschitz continuous on any closed interval that excludes the horizon, and it is characterized by the unique solution of an integral equation. A Picard iteration algorithm is discussed and implemented to exemplify the numerical computation and geometry of the optimal stopping boundary for some illustrative cases.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abrahams, J. and Thomas, J. (1981). Some comments on conditionally Markov and reciprocal Gaussian processes (corresp.). IEEE Trans. Inf. Theory 27, 523525.CrossRefGoogle Scholar
Andersson, P. (2012). Card counting in continuous time. J. Appl. Prob. 49, 184198.CrossRefGoogle Scholar
Angoshtari, B. and Leung, T. (2019). Optimal dynamic basis trading. Ann. Finance 15, 307335.CrossRefGoogle Scholar
Back, K. (1992). Insider trading in continuous time. Rev. Financial Studies 5, 387409.CrossRefGoogle Scholar
Barczy, M. and Kern, P. (2011). General alpha-Wiener bridges. Commun. Stoch. Anal. 5, 585608.Google Scholar
Barczy, M. and Kern, P. (2013). Representations of multidimensional linear process bridges. Random Operators Stoch. Equat. 21, 159189.Google Scholar
Barczy, M. and Kern, P. (2013). Sample path deviations of the Wiener and the Ornstein–Uhlenbeck process from its bridges. Brazilian J. Prob. Statist. 27, 437466.CrossRefGoogle Scholar
Borisov, I. S. (1983). On a criterion for Gaussian random processes to be Markovian. Theory Prob. Appl. 27, 863865.CrossRefGoogle Scholar
Boyce, W. M. (1970). Stopping rules for selling bonds. Bell J. Econom. Manag. Sci. 1, 2753.CrossRefGoogle Scholar
Brennan, M. J. and Schwartz, E. S. (1990). Arbitrage in stock index futures. J. Business 63, S7S31.CrossRefGoogle Scholar
Buonocore, A., Caputo, L., Nobile, A. G. and Pirozzi, E. (2013). On some time-non-homogeneous linear diffusion processes and related bridges. Sci. Math. Japon. 76, 5577.Google Scholar
Campi, L. and Çetin, U. (2007). Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling. Finance Stoch. 11, 591602.CrossRefGoogle Scholar
Campi, L., Çetin, U. and Danilova, A. (2011). Dynamic Markov bridges motivated by models of insider trading. Stoch. Process. Appl. 121, 534567.CrossRefGoogle Scholar
Campi, L., Çetin, U. and Danilova, A. (2013). Equilibrium model with default and dynamic insider information. Finance Stoch. 17, 565585.CrossRefGoogle Scholar
Cartea, Á., Jaimungal, S. and Kinzebulatov, D. (2016). Algorithmic trading with learning. Internat. J. Theoret. Appl. Finance 19, article no. 1650028.CrossRefGoogle Scholar
Çetin, U. and Danilova, A. (2016). Markov bridges: SDE representation. Stoch. Process. Appl. 126, 651679.CrossRefGoogle Scholar
Çetin, U. and Xing, H. (2013). Point process bridges and weak convergence of insider trading models. Electron. J. Prob. 18, 124.CrossRefGoogle Scholar
Chaumont, L. and Bravo, G. U. (2011). Markovian bridges: weak continuity and pathwise constructions. Ann. Prob. 39, 609647.CrossRefGoogle Scholar
Chen, R. W., Grigorescu, I. and Kang, M. (2015). Optimal stopping for Shepp’s urn with risk aversion. Stochastics 87, 702722.CrossRefGoogle Scholar
Chen, X., Leung, T. and Zhou, Y. (2021). Constrained dynamic futures portfolios with stochastic basis. Ann. Finance 18, 133.CrossRefGoogle Scholar
Chen, Y. and Georgiou, T. (2016). Stochastic bridges of linear systems. IEEE Trans. Automatic Control 61, 526531.Google Scholar
D’Auria, B. and Ferriero, A. (2020). A class of Itô diffusions with known terminal value and specified optimal barrier. Mathematics 8, article no. 123.CrossRefGoogle Scholar
D’Auria, B., García-Portugués, E. and Guada, A. (2020). Discounted optimal stopping of a Brownian bridge, with application to American options under pinning. Mathematics 8, 1159.CrossRefGoogle Scholar
Azze, A., D’Auria, B. and García-Portugués, E. (2024). Optimal stopping of an Ornstein–Uhlenbeck bridge. Stoch. Process. Their Appl. 172, 104342.Google Scholar
De Angelis, T. (2015). A note on the continuity of free-boundaries in finite-horizon optimal stopping problems for one-dimensional diffusions. SIAM J. Control Optimization 53, 167184.CrossRefGoogle Scholar
De Angelis, T. and Milazzo, A. (2020). Optimal stopping for the exponential of a Brownian bridge. J. Appl. Prob. 57, 361384.CrossRefGoogle Scholar
De Angelis, T. and Peskir, G. (2020). Global $C^{1}$ regularity of the value function in optimal stopping problems. Ann. Appl. Prob. 30, 10071031.Google Scholar
De Angelis, T. and Stabile, G. (2019). On Lipschitz continuous optimal stopping boundaries. SIAM J. Control Optimization 57, 402436.CrossRefGoogle Scholar
Detemple, J. and Kitapbayev, Y. (2020). The value of green energy under regulation uncertainty. Energy Econom. 89, article no. 104807.CrossRefGoogle Scholar
Dochviri, B. (1995). On optimal stopping of inhomogeneous standard Markov processes. Georgian Math. J. 2, 335346.CrossRefGoogle Scholar
Dynkin, E. B. (1963). The optimum choice of the instant for stopping a Markov process. Soviet Math. Dokl. 150, 627629.Google Scholar
Ekström, E. and Vaicenavicius, J. (2020). Optimal stopping of a Brownian bridge with an unknown pinning point. Stoch. Process. Appl. 130, 806823.CrossRefGoogle Scholar
Ekström, E. and Wanntorp, H. (2009). Optimal stopping of a Brownian bridge. J. Appl. Prob. 46, 170180.CrossRefGoogle Scholar
Erickson, W. W. and Steck, D. A. (2022). Anatomy of an extreme event: What can we infer about the history of a heavy-tailed random walk? Phys. Rev. E 106, 054142.CrossRefGoogle Scholar
Ernst, P. A. and Shepp, L. A. (2015). Revisiting a theorem of L. A. Shepp on optimal stopping. Commun. Stoch. Anal. 9, 419423.Google Scholar
Fitzsimmons, P., Pitman, J. and Yor, M. (1993). Markovian bridges: construction, palm interpretation, and splicing. In Seminar on Stochastic Processes, 1992, eds E. Çinlar, K. L. Chung, M. J. Sharpe, R. F. Bass and K. Burdzy, Birkhäuser, Boston, pp. 101134.Google Scholar
Föllmer, H. (1972). Optimal stopping of constrained Brownian motion. J. Appl. Prob. 9, 557571.CrossRefGoogle Scholar
Friedman, A. (1964). Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs.Google Scholar
Friedman, A. (1975). Parabolic variational inequalities in one space dimension and smoothness of the free boundary. J. Funct. Anal. 18, 151176.CrossRefGoogle Scholar
Friedman, A. (1975). Stopping time problems and the shape of the domain of continuation. In Control Theory, Numerical Methods and Computer Systems Modelling, Springer, Berlin, Heidelberg, pp. 559566.CrossRefGoogle Scholar
Gasbarra, D., Sottinen, T. and Valkeila, E. (2007). Gaussian bridges. In Stochastic Analysis and Applications, eds F. E. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal and T. Zhang, Springer, Berlin, pp. 361–382.CrossRefGoogle Scholar
Glover, K. (2020). Optimally stopping a Brownian bridge with an unknown pinning time: a Bayesian approach. Stoch. Process. Appl. 150, 919937.CrossRefGoogle Scholar
Golez, B. and Jackwerth, J. C. (2012). Pinning in the S&P 500 futures. J. Financial Econom. 106, 566585.CrossRefGoogle Scholar
Hildebrandt, F. and Rœlly, S. (2020). Pinned diffusions and Markov bridges. J. Theoret. Prob. 33, 906917.CrossRefGoogle Scholar
Hilliard, J. E. and Hilliard, J. (2015). Pricing American options when there is short-lived arbitrage. Internat. J. Financial Markets Derivatives 4, 4353.CrossRefGoogle Scholar
Horne, J. S., Garton, E. O., Krone, S. M. and Lewis, J. S. (2007). Analyzing animal movements using Brownian bridges. Ecology 88, 23542363.CrossRefGoogle ScholarPubMed
Hoyle, E., Hughston, L. P. and Macrina, A. (2011). Lévy random bridges and the modelling of financial information. Stoch. Process. Appl. 121, 856884.CrossRefGoogle Scholar
Jacka, S. and Lynn, R. (1992). Finite-horizon optimal stopping, obstacle problems and the shape of the continuation region. Stoch. Stoch. Rep. 39, 2542.Google Scholar
Kranstauber, B. (2019). Modelling animal movement as Brownian bridges with covariates. Movement Ecol. 7, article no. 22.CrossRefGoogle ScholarPubMed
Krishnan, H. and Nelken, I. (2001). The effect of stock pinning upon option prices. Risk (December 2001), 17–20.Google Scholar
Krumm, J. (2021). Brownian bridge interpolation for human mobility? In Proceedings of the 29th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’21), Association for Computing Machinery, New York, pp. 175–183.Google Scholar
Krylov, N. V. (1980). Controlled Diffusion Processes. Springer, New York.CrossRefGoogle Scholar
Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica 53, 13151335.CrossRefGoogle Scholar
Leung, T., Li, J. and Li, X. (2018). Optimal timing to trade along a randomized Brownian bridge. Internat. J. Financial Studies 6, article no. 75.CrossRefGoogle Scholar
Liu, J. and Longstaff, F. A. (2004). Losing money on arbitrage: optimal dynamic portfolio choice in markets with arbitrage opportunities. Rev. Financial Studies 17, 611641.CrossRefGoogle Scholar
Mehr, C. B. and McFadden, J. A. (1965). Certain properties of Gaussian processes and their first-passage times. J. R. Statist. Soc. B [Statist. Methodology] 27, 505522.CrossRefGoogle Scholar
Ni, S. X., Pearson, N. D. and Poteshman, A. M. (2005). Stock price clustering on option expiration dates. J. Financial Econom. 78, 4987.Google Scholar
Ni, S. X., Pearson, N. D., Poteshman, A. M. and White, J. (2021). Does option trading have a pervasive impact on underlying stock prices? Rev. Financial Studies 34, 19521986.CrossRefGoogle Scholar
Oshima, Y. (2006). On an optimal stopping problem of time inhomogeneous diffusion processes. SIAM J. Control Optimization 45, 565579.CrossRefGoogle Scholar
Pedersen, J. L. and Peskir, G. (2002). On nonlinear integral equations arising in problems of optimal stopping. In Functional Analysis VII: Proceedings of the Postgraduate School and Conference held in Dubrovnik, September 17–26, 2001, eds D. Bakić, P. Pandžić and G. Peskir, University of Aarhus, Department of Mathematical Sciences, pp. 159–175.Google Scholar
Peng, S. and Zhu, X. (2006). Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations. Stoch. Process. Appl. 116, 370380.CrossRefGoogle Scholar
Peskir, G. (2005). A change-of-variable formula with local time on curves. J. Theoret. Prob. 18, 499535.CrossRefGoogle Scholar
Peskir, G. (2005). On the American option problem. Math. Finance 15, 169181.CrossRefGoogle Scholar
Peskir, G. (2019). Continuity of the optimal stopping boundary for two-dimensional diffusions. Ann. Appl. Prob. 29, 505530.CrossRefGoogle Scholar
Peskir, G. and Shiryaev, A. (2006). Optimal Stopping and Free-Boundary Problems. Birkhäuser, Basel.Google Scholar
Pitman, J. and Yor, M. (1982). A decomposition of Bessel bridges. Z. Wahrscheinlichkeitsth. 59, 425457.CrossRefGoogle Scholar
Rosén, B. (1965). Limit theorems for sampling from finite populations. Ark. Mat. 5, 383424.CrossRefGoogle Scholar
Salminen, P. (1984). Brownian excursions revisited. In Seminar on Stochastic Processes, 1983, eds E. Çinlar, K. L. Chung and R. K. Getoor, Birkhäuser, Boston, pp. 161187.Google Scholar
Shepp, L. A. (1969). Explicit solutions to some problems of optimal stopping. Ann. Math. Statist. 40, 9931010.CrossRefGoogle Scholar
Shiryaev, A. (2008). Optimal Stopping Rules. Springer, Berlin, Heidelberg.Google Scholar
Sottinen, T. and Yazigi, A. (2014). Generalized Gaussian bridges. Stoch. Process. Appl. 124, 30843105.CrossRefGoogle Scholar
Taylor, H. M. (1968). Optimal stopping in a Markov process. Ann. Math. Statist. 39, 13331344.CrossRefGoogle Scholar
Venek, V., Brunauer, R. and Schneider, C. (2016). Evaluating the Brownian bridge movement model to determine regularities of people’s movements. J. Geograph. Inf. Sci. 4, 2035.Google Scholar
Wald, A. (1947). Sequential Analysis. John Wiley, New York.Google Scholar
Williams, C. K. and Rasmussen, C. E. (2006). Gaussian Processes for Machine Learning. MIT Press.Google Scholar
Yang, Y. (2014). Refined solutions of time inhomogeneous optimal stopping problem and zero-sum game via Dirichlet form. Prob. Math. Statist. 34, 253271.Google Scholar