Published online by Cambridge University Press: 01 July 2016
In this paper we study a multi-channel queueing model of type with N waiting places and a non-recurrent input flow dependent on queue length at the time of each arrival. The queue length is treated as a basic process. We first determine explicitly the limit distribution of the embedded Markov chain. Then, by introducing an auxiliary Markov process, we find a simple relationship between the limiting distribution of the Markov chain and the limiting distribution of the original process with continuous time parameter. Here we simultaneously combine two methods: solving the corresponding Kolmogorov system of the differential equations, and using an approach based on the theory of semi-regenerative processes. Among various applications of multi-channel queues with state-dependent input stream, we consider a closed single-server system with reserve replacement and state-dependent service, which turns out to be dual (in a certain sense) in relation to our model; an optimization problem is also solved, and an interpretation by means of tandem systems is discussed.
This paper is based on part of a doctoral dissertation submitted to the Department of Mathematics, Technical University of Berlin.