Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T03:06:22.500Z Has data issue: false hasContentIssue false

Integral and differential characterizations of the Gibbs process

Published online by Cambridge University Press:  01 July 2016

X. X. Nguyen
Affiliation:
Universität Bielefeld
H. Zessin
Affiliation:
Universität Bielefeld

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Buffon Bicentenary Symposium on Stochastic Geometry and Directional Statistics
Copyright
Copyright © Applied Probability Trust 1977 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mecke, J. (1967) Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitsth. 9, 3658.CrossRefGoogle Scholar
[2] Ruelle, D. (1970) Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127159.CrossRefGoogle Scholar
[3] Georgii, H. O. (1976) Canonical and grand canonical Gibbs states for continuum systems. Commun. Math. Phys. 48, 3151.CrossRefGoogle Scholar