Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T00:57:53.129Z Has data issue: false hasContentIssue false

Fluctuations near homogeneous states of chemical reactions with diffusion

Published online by Cambridge University Press:  01 July 2016

Peter Kotelenez*
Affiliation:
Universität Bremen
*
Postal address: Forschungsschwerpunkt Dynamische Systeme, Universität Bremen, Bibliothekstrasse, Postfach 330440, 2800 Bremen 33, W. Germany.

Abstract

Conditions are given under which a space-time jump Markov process describing the stochastic model of non-linear chemical reactions with diffusion converges to the homogeneous state solution of the corresponding reaction-diffusion equation. The deviation is measured by a central limit theorem. This limit is a distribution-valued Ornstein–Uhlenbeck process and can be represented as the mild solution of a certain stochastic partial differential equation.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1987 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was done during the author&s stay at the University of North Carolina at Chapel Hill in April 1985 and was supported by the Air force Office of Scientific Research under AFOSR Grant No. F 49620 82 C 0009.

References

1. Arnold, L. (1981) Mathematical models of chemical reactions. In Stochastic Systems , ed. Hazewinkel, M. and Willems, J., Dordrecht.Google Scholar
2. Arnold, L., Curtain, R. F. and Kotelenez, P. (1980) Nonlinear evolution equations in Hilbert space. Forschungsschwerpunkt Dynamische Systeme, Universität Bremen, Report Nr. 17.Google Scholar
3. Arnold, L. and Theodosopulu, M. (1980) Deterministic limit of the stochastic model of chemical reactions with diffusion. Adv. Appl. Prob. 12, 367379.Google Scholar
4. Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.Google Scholar
5. Coddington, E. A. and Levinson, N. (1955) Theory of Ordinary Differential Equations. McGraw-Hill, New York.Google Scholar
6. Curtain, R. F. (1981) Markov processes generated by linear stochastic evolution equations. Stochastics 5, 135165.Google Scholar
7. Curtain, R. F. and Pritchard, A. J. (1978) Infinite Dimensional Linear Systems Theory. Lectures Notes in Control and Information Sciences 8, Springer-Verlag, Berlin.CrossRefGoogle Scholar
8. Daprato, G., Iannelli, M. and Tubaro, L. (1982) On the path regularity of a stochastic process in a Hilbert space defined by the Ito integral. Stochastics 6, 315322.Google Scholar
9. Davies, E. B. (1980) One-Parameter Semigroups. Academic Press, London.Google Scholar
10. Dawson, D. A. (1972) Stochastic evolution equations. Math. Biosci. 15, 287316.CrossRefGoogle Scholar
11. Dawson, D. A. (1975) Stochastic evolution equations and related measure processes. J. Multivariate Anal. 5, 152.Google Scholar
12. Gardiner, C. W., Mcneil, K. J., Walls, D. F. and Matheson, I. S. (1976) Correlations in stochastic theories of chemical reactions. J. Statist. Phys. 14, 307331.CrossRefGoogle Scholar
13. Gihman, I. I. and Skorohod, A. V. (1974) The Theory of Stochastic Processes , Vol. 2. Springer-Verlag, Berlin.Google Scholar
14. Gorostiza, L. G. (1983) High density limit theorems for infinite systems of unscaled branching Brownian motions. Ann. Prob. 11, 374392.Google Scholar
15. Haken, H. (1983) Advanced Synergetics. Springer-Verlag, Berlin.Google Scholar
16. Holley, R. and Stroock, D. W. (1978) Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Publ. RIMS, Kyoto Univ. 14, 741788.Google Scholar
17. Ito, K. (1980) Continuous additive -processes. In Stochastic Differential Systems , ed. Grigelionis, B., Springer-Verlag, Berlin.Google Scholar
18. Ito, K. (1983) Distribution-valued processes arising from independent Brownian motions. Math. Z. 182, 1733.Google Scholar
19. Kallianpur, G. and Wolpert, R. (1984) Infinite dimensional differential equation models for spatially distributed neurons. Appl. Math. Optim. 12, 125172.Google Scholar
20. Van Kampen, N. G. (1983) Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam.Google Scholar
21. Kotelenez, P. (1982) A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8, 139151.Google Scholar
22. Kotelenez, P. (1982) Ph.D. Thesis, Bremen.Google Scholar
23. Kotelenez, P. (1984) Continuity properties of Hilbert space valued martingales. Stoch. Proc. Appl. 17, 115125.CrossRefGoogle Scholar
24. Kotelenez, P. (1984) A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Stoch. Anal. Appl. 2, 245265.Google Scholar
25. Kotelenez, P. (1986) Law of large numbers and central limit theorem for linear chemical reactions with diffusion. Ann. Prob. 14, 173193.Google Scholar
26. Kotelenez, P. (1986) Linear parabolic differential equations as limits of space-time jump Markov processes. J. Math. Anal. Appl. 116, 4276.Google Scholar
27. Kotelenez, P. (1985) On the semigroup approach to stochastic evolution equations. In, Stochastic Space-Time Models and Limit Theorems , ed. Arnold, L. and Kotelenez, P.. Reidel, Dordrecht.Google Scholar
28. Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8, 344356.Google Scholar
29. Kurtz, T. (1981) Approximation of Population Processes. CBMS-NSF Regional Conference series in Applied Mathematics 36, SIAM, Philadelphia.Google Scholar
30. Martin-Löf, A. (1976) Limit theorems for the motions of a Poisson system of independent Markovian particles with high density. Z. Wahrscheinlichkeitsth. 34, 205223.CrossRefGoogle Scholar
31. Nicolis, G. and Prigogine, I. (1977) Self-Organization in Non-equilibrium Systems. Wiley, New York.Google Scholar
32. Schwartz, L. (1954) Sur l&impossibilité de la multiplication des distributions. C.R. Acad. Sci. Paris 239, 847848.Google Scholar
33. Smoller, J. (1983) Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York.CrossRefGoogle Scholar
34. Tanabe, H. (1979) Equations of Evolution. Pitman, London.Google Scholar
35. Ustunel, A. S. (1984) Additive processes on nuclear spaces. Ann. Prob. 12, 858868.Google Scholar
36. Walsh, J. (1981) A stochastic model of neural response. Adv. Appl. Prob. 13, 231281.CrossRefGoogle Scholar
37. Walsh, J. (1985) An Introduction to Stochastic Partial Differential Equations. Google Scholar
38. Yosida, K. (1968) Functional Analysis. Springer-Verlag, Berlin.Google Scholar