Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T04:11:46.906Z Has data issue: false hasContentIssue false

The distance between two random points in plane regions

Published online by Cambridge University Press:  01 July 2016

T. K. Sheng*
Affiliation:
The University of Newcastle
*
Postal address: Faculty of Mathematics, The University of Newcastle, NSW 2308, Australia.

Abstract

Let T be a triangle. P be a parallelogram, E be an ellipse, A, B be concentric circles, C, D be concentric dartboard regions, R, S be rectangles of the same orientation, U, V be two finite unions and/or differences of convex regions in the Euclidean plane. Given a function f on [0,∞), let E[/(r), U, V] denote the mean value of f(|uv|), where |uv| is the distance between uU and vV. Using Borel’s overlap technique, a specific distance weight function and a specific equivalence relation, we obtain formulae expressing E[f(r), U, V] in terms of triple integrals, expressing E(rn, U, V), E[f(r), A, V] and E[f(r), R, V] in terms of double integrals, expressing E[f(r), A, B], E[f(r), R, S], E[f(r), T, T], E[f(r), P, P], E(rn, C, D) and E(rn, R, V) in terms of single integrals, and expressing E(rn, R, S), E(rn, P, P), E(rn, T, T), E(rn, E, E) in terms of elementary functions, where n is an integer ≧−1. Many other related results are also given.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alagar, V. S. (1976) The distribution of the distance between random points. J. Appl. Prob. 13, 558566.CrossRefGoogle Scholar
Anderssen, R. S., Brent, R. P., Daley, D. J. and Moran, P. A. P. (1976) Concerning and a Taylor series method. SIAM J. Appl. Math. 30, 2230.Google Scholar
Baddeley, A. (1977a) A fourth note on recent research in geometrical probability. Adv. Appl. Prob. 9, 824860.Google Scholar
Baddeley, A. (1977b) Integrals on a moving manifold and geometrical probability. Adv. Appl. Prob. 9, 588603.CrossRefGoogle Scholar
Borel, E. (1925) Principes et formules classiques du calcul des probabilités. Gauthier-Villars, Paris.Google Scholar
Borel, E. (1947) Principes et formules classiques du calcul des probabilités. Gauthier-Villars, Paris.Google Scholar
Bouwkamp, C. J. (1947) A study of Bessel functions in connection with the problem of two mutually attracting circular discs. Proc. Kon. Ned. Akad. Wetensch. 50, 10711083.Google Scholar
Bouwkamp, C. J. (1977) On the average distance between points in two coplanar nonoverlapping circular disks. J. Appl. Sci. Eng. A 2, 183186.Google Scholar
Crofton, M. (1885) Probability. In Encyclopaedia Britannica 9th edn 19, 768788.Google Scholar
Daley, D. J. (1976) Solution to problem 75-12. An average distance. SIAM Rev. 18, 498499.Google Scholar
Deltheil, R. (1926) Probabilités géométriques. Traité du calcul des probabilités et de ses applications : Tome II, Fascicule II, pp. 114120. Gauthier-Villars, Paris.Google Scholar
Doyle, J. K. and Graver, J. E. (1982) Mean distance for shapes. J. Graph Theory 6, 455471.Google Scholar
Ehlers, P. F. and Enns, E. G. (1981) Random secants of a convex body generated by randomness. J. Appl. Prob. 18, 157166.Google Scholar
Fairthorne, D. (1964) The distance between random points in two concentric circles. Biometrika 51, 275277.Google Scholar
Fortet, R. and Kambouzia, M. (1975) Ensembles aléatoires, répartitions ponctuelles aléatoires, problemes de recouvrement. Ann. Inst. H. Poincaré 11 B, 299316.Google Scholar
Ghosh, B. (1943a) On the distribution of random distances in a rectangle. Science and Culture 8, 388.Google Scholar
Ghosh, B. (1943b) On random distance between two rectangles. Science and Culture 8, 464.Google Scholar
Ghosh, B. (1949) Topographic variation in statistical fields. Calcutta Statist. Assoc. Bull. 2(5), 1128.CrossRefGoogle Scholar
Ghosh, B. (1951) Random distances within a rectangle and between two rectangles. Bull. Calcutta Math. Soc. 43, 1724.Google Scholar
Gloukhian, E. (1980) Moyennes distantielles dans la sphere euclidienne. Rev. Statist. Appl. 28(1), 6975.Google Scholar
Groemer, H. (1980) The average distance between two convex sets. J. Appl. Prob. 17, 415422.Google Scholar
Hammersley, J. M. (1950) The distribution of distance in a hypersphere. Ann. Math. Statist. 21, 337452.Google Scholar
Hammersley, J. M. (1951a) A theorem on multiple integrals. Proc. Camb. Phil. Soc. 47, 274278.Google Scholar
Hammersley, J. M. (1951b) on a certain type of integral associated with circular cylinders. Proc. R. Soc. London A 210, 98110.Google Scholar
Hammersley, J. M. (1952) Lagrangian integration coefficients for distance functions taken over right circular cylinders. J. Math. Phys. 31, 139150.Google Scholar
Hammersley, J. M. (1960) Note 2936. On note 2871. Math. Gazette 44, 287288.Google Scholar
Kendall, M. G. and Moran, P. A. P. (1963) Geometrical Probability. Griffin, London.Google Scholar
Lew, J. S., Frauenthal, J. C. and Keyfitz, N. (1978) On the average distances in a circular disc. SIAM Rev. 20, 584592.CrossRefGoogle Scholar
Little, D. V. (1974) A third note on recent research in geometrical probability. Adv. Appl. Prob. 6, 103130.Google Scholar
Lord, R. D. (1954) The distribution of distance in a hypersphere. Ann. Math. Statist. 25, 794798.Google Scholar
Matheron, G. (1975) Random Sets and Integral Geometry. Wiley, London.Google Scholar
Matheron, G. (1976) La formule de Crofton pour les sections épaisses. J. Appl. Prob. 13, 707713.Google Scholar
Miles, R. E. (1981) A survey of geometrical probability in the plane, with emphasis on stochastic image modeling. In Image Modeling , ed. Rosenfeld, A., Academic Press, 277300.CrossRefGoogle Scholar
Moran, P. A. P. (1966) A note on recent research in geometrical probability. J. Appl. Prob. 3, 453463.CrossRefGoogle Scholar
Moran, P. A. P. (1969) A second note on recent research in geometrical probability. Adv. Appl. Prob. 1, 7389.Google Scholar
Moreau De Saint-Martin, J. (1980) Distribution de distance dans la sphère euclidienne. Rev. Statist. Appl. 28(4), 6366.Google Scholar
Murchland, J. D. (1976) Comment to problem 75-12. An average distance. SIAM Review 18, 498.Google Scholar
Oser, H. J. (1976) Problem 75-12. An average distance. SIAM Rev. 18, 497.Google Scholar
Reed, W. J. (1974) Random points in a simplex. Pacific J. Math. 54, 183198.CrossRefGoogle Scholar
Ruben, H. (1970) On a class of double space integrals with applications in mensuration, statistical physics, and geometrical probability. Proc. 12th Biennial Seminar Canad. Math. Congr. , 209230.Google Scholar
Ruben, H. (1978) On the distance between points in polygons. In Geometrical Probability and Biological Structures: Buffon’s 200th Anniversary , ed. Miles, R. E. and Serra, J., Lecture Notes in Biomathematics 23, Springer-Verlag, Berlin, 4669.Google Scholar
Ruben, H. and Reed, W. J. (1973) A more general form of a theorem of Crofton. J. Appl. Prob. 10, 479482.Google Scholar
Santaló, L. A. (1976) Integral Geometry and Geometric Probability. Addison-Wesley, Reading, Ma.Google Scholar
Schneider, R. (1981) Crofton’s Formula generalized to projected thick sections. Rend. Circ. Mat. Palermo (2) 30(1), 157160.CrossRefGoogle Scholar
Schweitzer, P. A. (1968) Moments of distances of uniformly distributed points. Amer. Math. Monthly 75, 802804.Google Scholar
Vaughan, R. J. (1976) Solution to problem 75-12. An average distance. SIAM Rev. 18, 500.Google Scholar
Watson, G. N. (1959) Note 2871. A quadruple integral. Math. Gazette 43, 280283.CrossRefGoogle Scholar