Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T18:44:17.496Z Has data issue: false hasContentIssue false

Critical cluster cascades

Published online by Cambridge University Press:  13 September 2022

Matthias Kirchner*
Affiliation:
Institute of Teacher Education NMS Bern
*
*Postal address: Waisenhausplatz 27, 3000 Bern, Switzerland. Email address: [email protected]

Abstract

We consider a sequence of Poisson cluster point processes on $\mathbb{R}^d$ : at step $n\in\mathbb{N}_0$ of the construction, the cluster centers have intensity $c/(n+1)$ for some $c>0$ , and each cluster consists of the particles of a branching random walk up to generation n—generated by a point process with mean 1. We show that this ‘critical cluster cascade’ converges weakly, and that either the limit point process equals the void process (extinction), or it has the same intensity c as the critical cluster cascade (persistence). We obtain persistence if and only if the Palm version of the outgrown critical branching random walk is locally almost surely finite. This result allows us to give numerous examples for persistent critical cluster cascades.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brémaud, P. and Massoulié, L. (2001). Hawkes branching processes without ancestors. J. Appl. Prob. 38, 122135.CrossRefGoogle Scholar
Daley, D. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes I, 2nd edn. Springer, New York.Google Scholar
Debes, H., Kerstan, J., Liemant, A. and Matthes, K. (1970). Verallgemeinerungen eines Satzes von Dobruschin I. Math. Nachr. 47, 183244.CrossRefGoogle Scholar
Hawkes, A. and Oakes, D. (1974). A cluster representation of a self-exciting point process. J. Appl. Prob. 11, 493503.CrossRefGoogle Scholar
Kallenberg, O. (1977). Stability of critical cluster fields. Math. Nachr. 77, 743.CrossRefGoogle Scholar
Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Kallenberg, O. (2017). Random Measures, Theory and Applications. Springer, Cham.CrossRefGoogle Scholar
Kesten, H. (1995). Branching random walk with a critical branching part. J. Theoret. Prob. 8, 921962.CrossRefGoogle Scholar
Lalley, S. P. and Zheng, X. (2011). Occupation statistics of critical branching random walks in two or higher dimensions. Ann. Prob. 39, 327368.CrossRefGoogle Scholar
Liemant, A. (1981). Kritische Verzweigungsprozesse mit allgemeinem Phasenraum, IV. Math. Nachr. 102, 235254.CrossRefGoogle Scholar
Liemant, A., Matthes, K. and Wakolbinger, A. (1988). Equilibrium Distributions of Branching Processes. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Matthes, K., Kerstan, J. and Mecke, J. (1978). Infinitely Divisible Point Processes. John Wiley, New York.Google Scholar
Peköz, E. A., Röllin, A. and Ross, N. (2020). Exponential and Laplace approximation for occupation statistics of branching random walk. Electron. J. Prob. 25, article no. 55, 22 pp.CrossRefGoogle Scholar
Shi, Z. (2016). Branching Random Walks: École d’été de Probabilités de Saint-Flour XLII – 2012 . Lecture Notes in Mathematics. Springer, Cham.Google Scholar