Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T01:33:55.975Z Has data issue: false hasContentIssue false

Brownian Excursions and Parisian Barrier Options

Published online by Cambridge University Press:  01 July 2016

Marc Chesney*
Affiliation:
HEC
Monique Jeanblanc-Picqué*
Affiliation:
Université d'Evry Val d'Essonne
Marc Yor*
Affiliation:
Université Pierre et Marie Curie
*
Postal address: HEC, Département Finance et Economie, 1, rue de la libération, 78351 Jouy en Josas Cedex, France.
∗∗ Postal address: Equipe d'analyse et probabilités, Université d'Evry Val d'Essonne, Boulevard des Coquibus, 91025 Evry Cedex, France.
∗∗∗ Postal address: Laboratoire de Probabilités, Tour 56, 3-ième étage, Université Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris Cedex, France.

Abstract

In this paper we study a new kind of option, called hereinafter a Parisian barrier option. This option is the following variant of the so-called barrier option: a down-and-out barrier option becomes worthless as soon as a barrier is reached, whereas a down-and-out Parisian barrier option is lost by the owner if the underlying asset reaches a prespecified level and remains constantly below this level for a time interval longer than a fixed number, called the window. Properties of durations of Brownian excursions play an essential role. We also study another kind of option, called here a cumulative Parisian option, which becomes worthless if the total time spent below a certain level is too long.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 1997 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akahori, J. (1995) Some formulae for a new type of path-dependent option. Ann. Appl. Prob. 5, 383388.Google Scholar
[2] Azema, J. and Yor, M. (1989) Etude d'une martingale remarquable. Séminaire de probabilités XXIII (Lecture Notes in Mathematics 1372). Springer, Berlin.Google Scholar
[3] Black, F. and Scholes, M. (1973) The pricing of options and corporate liabilities. J. Political Econ. 81, 637654.Google Scholar
[4] Chung, K. L. (1976) Excursions in Brownian motion. Ark. Math. 14, 155177.Google Scholar
[5] Cornwall, M. J., Kentwell, G. W., Chesney, M., Jeanblanc-Picque, M. and Yor, M. (1997) Parisian barrier option: a discussion. Risk Mag. To appear.Google Scholar
[6] Darling, D. A. (1952) The influence of the maximum term in the addition of independent random variables. Trans. Amer. Math. Soc. 73, 95107.CrossRefGoogle Scholar
[7] Dassios, A. (1995) The distribution of the quantiles of a Brownian motion with drift. Ann. Appl. Prob. 5, 389398.Google Scholar
[8] Dellacherie, C., Maisonneuve, B. and Meyer, P. A. (1992) Probabilités et Potentiel. Processus de Markov (fin). Compléments de Calcul Stochastique. Hermann, Paris.Google Scholar
[9] Embrechts, P., Rogers, L. C. G. and Yor, M. (1995) A proof of Dassios' representation of the a-quantile of Brownian motion with drift. Ann. Appl. Prob. 5, 757767.CrossRefGoogle Scholar
[10] Geman, H. and Yor, M. (1993) Bessel processes, Asian options and perpetuities. Math. Finance 3, 349375.Google Scholar
[11] Geman, H. and Yor, M. (1996) Pricing and hedging double-barrier options: a probabilistic approach. Math. Finance 6, 365378.Google Scholar
[12] Grabbe, J. (1983) The pricing of call and put options on foreign exchanges. J. Int. Money Finance 2, 39254.Google Scholar
[13] Horowitz, J. (1972) Semi-linear Markov processes, subordinator and renewal theory. Z. Wahrscheinlichkeitsth. 24, 167193.Google Scholar
[14] Karatzas, I. and Shreve, S. (1984) Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control. Ann. Prob. 12, 819828.Google Scholar
[15] Kingman, J. E. (1975) Random distributions. J. R. Statist. Soc. B 37, pp. 122.Google Scholar
[16] Knight, F. B. (1986) On the duration of the longest excursion. In Seminar on Stochastic Processes 1985. Birkhäuser, Boston.Google Scholar
[17] Lamperti, J. (1961) On contribution to renewal theory. Proc. Amer. Math. Soc. 12, 724731.Google Scholar
[18] Pitman, J. and Yor, M. (1997) The two parameter Poisson-Dirichlet distribution derived from stable subordinators. Ann. Prob. To appear.CrossRefGoogle Scholar
[19] Port, S. (1963) An elementary probability approach to fluctuation theory. Ann. Math. Statist. 31, 10341044.Google Scholar
[20] Reiner, E. and Rubinstein, M. (1992) Exotic options. Working paper. Google Scholar
[21] Resnick, S. I. (1986) Point process, regular variation and weak convergence. Adv. Appl. Prob. 18, 66138.CrossRefGoogle Scholar
[22] Revuz, D. and Yor, M. (1994) Continuous Martingales and Borwmian Motion. 2nd edn. Springer, Berlin.Google Scholar
[23] Wendel, J. G. (1963) Order statistics of partial sums. J. Math. Anal. Appl. 6, 109151.Google Scholar
[24] Wendel, J. G. (1964) Zero-free intervals of semi-stable Markov-processes. Math. Scand. 14, 2134.CrossRefGoogle Scholar
[25] Yor, M. (1993) Some remarks on Akahori's generalized arc sine formula for Brownian motion with drift. Preprint. Laboratoire de Probabilités, Paris 6.Google Scholar
[26] Yor, M. (1995) The distribution of Brownian quantiles. J. Appl. Prob. 32, 405416.CrossRefGoogle Scholar