Published online by Cambridge University Press: 01 July 2016
Let be a real-valued, homogeneous, and isotropic random field indexed in . When restricted to those indices with , the Euclidean length of , equal to r (a positive constant), then the random field resides on the surface of a sphere of radius r. Using a modified stratified spherical sampling plan (Brown (1993a)) on the sphere, define to be a realization of the random process and to be the cardinality of . A bootstrap algorithm is presented and conditions for strong uniform consistency of the bootstrap cumulative distribution function of the standardized sample mean, , are given. We illustrate the bootstrap algorithm with global land-area data.
This research was partially supported by NSF grant DMS-94.04130.