Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T16:31:48.596Z Has data issue: false hasContentIssue false

Anisotropic Growth of Voronoi Cells

Published online by Cambridge University Press:  01 July 2016

Thomas H. Scheike*
Affiliation:
University of California at Berkeley
*
* Present address: Schlegels Alle 9, 1807 Frederiksberg, Denmark.

Abstract

This paper discusses a simple extension of the classical Voronoi tessellation. Instead of using the Euclidean distance to decide the domains corresponding to the cell centers, another translation-invariant distance is used. The resulting tessellation is a scaled version of the usual Voronoi tessellation. Formulas for the mean characteristics (e.g. mean perimeter, surface and volume) of the cells are provided in the case of cell centers from a homogeneous Poisson process. The resulting tessellation is stationary and ergodic but not isotropic.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1994 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cowan, R. (1978) The use of the ergodic theorems in random geometry. Suppl. Adv. Appl. Prob. 10, 4757.Google Scholar
Cowan, R. (1980) Properties of ergodic random mosaic processes. Math. Nachr. 97, 89102.CrossRefGoogle Scholar
Dirichlet, G. L. (1850) über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Reine Angew. Math. 40, 209227.Google Scholar
Gilbert, E. N. (1962) Random subdivisions of space into crystals. Ann. Math. Statist. 33, 958972.Google Scholar
Green, P. J. and Sibson, R. (1978) Computing Dirichlet tessellations in the plane. Computer J. 21, 168173.Google Scholar
Hinde, A. L. and Miles, R. E. (1980) Monte Carlo estimates of the distributions of the random polygons of the Voronoi tessellation with respect to a Poisson process. J. Statist. Comput. Simul. 10, 205223.Google Scholar
Mecke, J. (1980) Palm methods for stationary random mosaics. In Combinatorial Principles in Stochastic Geometry, ed. Ambartzumian, R. V., pp. 124132. Armenian Academy of Sciences Publishing House, Erevan.Google Scholar
Meijering, J. L. (1953) Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips Res. Rep. 8, 270290.Google Scholar
Miles, R. E. (1969) Poisson flats in Euclidean spaces, part I: a finite number of random uniform flats. Adv. Appl. Prob. 1, 211237.Google Scholar
Miles, R. E. (1970) On the homogeneous planar Poisson point process. Math. Biosci. 6, 85127.Google Scholar
Miles, R. E. (1972) The random division of space. Suppl. Adv. Appl. Prob. 4, 243266.Google Scholar
Miles, R. E. (1974) A synopsis of Poisson flats in Euclidean spaces. In Stochastic Geometry, ed. Harding, E. F. and Kendall, D. G., pp. 202227, Wiley, New York.Google Scholar
Møller, J. (1989) Random tessellations in d. Adv. Appl. Prob. 21, 3773.Google Scholar
Okabe, A., Boots, B. and Sugihara, K. (1992) Spatial Tessellations Concepts and Applications of Voronoi Diagrams. Wiley, New York.Google Scholar
Radecke, W. (1980) Some mean value relations on stationary random mosaics in the space. Math. Nachr. 97, 203210.Google Scholar
Rogers, C. A. (1964) Packing and Covering. Cambridge University Press.Google Scholar
Spiegel, M. R. (1968) Mathematical Handbook of Formulas and Tables. McGraw-Hill, New York.Google Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1987) Stochastic Geometry and its Applications. Wiley, New York.Google Scholar
Thiessen, A. H. (1911) Precipitation averages for large areas. Monthly Weather Rev. 39, 10821084.Google Scholar
Voronoi, G. (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième memoire, recherches sur les parallelloèdres primitifs. J. Reine Angew. Math. 134, 287–198.Google Scholar