Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:04:15.011Z Has data issue: false hasContentIssue false

2. Stochastic processes of extremes: definitions and statistics

Published online by Cambridge University Press:  01 July 2016

J. Tiago De Oliveira*
Affiliation:
Academy of Sciences of Lisbon

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Invited Papers
Copyright
Copyright © Applied Probability Trust 1988 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dwass, M. (1964) Extremal processes. Ann. Math. Statist. 35, 17181725.CrossRefGoogle Scholar
Dwass, M. (1966) Extremal processes, II. Illinois J. Math. 10, 381391.CrossRefGoogle Scholar
Dwass, M. (1973) Extremal processes, III. Northwestern University Discussion Paper.Google Scholar
Lamperti, J. (1964) On extreme order statistics. Ann. Math. Statist. 35, 17261737.Google Scholar
Ramachandran, G. (1980) Extreme value theory and earthquake insurance. Trans. 21st Int. Congress Actuaries 1, 337353.Google Scholar
Resnick, S. I. (1973) Extreme processes and record time values. J. Appl. Prob. 10, 863868.CrossRefGoogle Scholar
Resnick, S. I. (1975) Weak convergence to extremal processes. Ann. Prob. 3, 951960.Google Scholar
Resnick, S. I. and Rubinovitch, M. (1973) The structure of extremal processes. Adv. Appl. Prob. 5, 287307.CrossRefGoogle Scholar
Tiago De Oliveira, J. (1968) Extremal processes; definition and properties. Publ. Inst. Stat. Univ. Paris XVII (2), 2536.Google Scholar
Tiago De Oliveira, J. (1972) An extreme-markovian-stationary sequence; quick statistical decision. Metron XXX (1-4), 111.Google Scholar
Tiago De Oliveira, J. (1973) An extreme-markovian-stationary process. Proc. 4th Conf. Prob. Theory (Brasov), Editure Academici Republici Socialista Romania, 217225.Google Scholar
Tiago De Oliveira, J. (1984) Weibull distributions and large earthquake modelling. In Probabilistic Methods in the Mechanics of Solids and Structures, ed. Eggwertz, S. and Lind, N. C., Springer-Verlag, Berlin, 8189.Google Scholar
Tiago De Oliveira, J. (1986) A extreme-markovian-evolutionary sequence. Trab. Estad. Univ. Oper. 36, 291300.Google Scholar
Tiago De Oliveira, J. (1987) The structure of sliding processes; applications. International Conference on Structural Failure, Singapore 2, M-51/56.Google Scholar
Yegulalp, T. M. and Kuo, J. T. (1974) Statistical prediction of the occurrence of maximum magnitude earthquakes. Bull. Seism. Soc. Amer. 64, 393414.CrossRefGoogle Scholar