Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T02:37:51.806Z Has data issue: false hasContentIssue false

Superconvergence of Mixed Methods for Optimal Control Problems Governed by Parabolic Equations

Published online by Cambridge University Press:  03 June 2015

Xiaoqing Xing*
Affiliation:
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
Yanping Chen*
Affiliation:
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
*
URL: http://202.116.32.252/userinfo.asp?usernamesp=%B3%C2%D1%DE%C6%BC Email: [email protected]
Corresponding author. Email: [email protected]
Get access

Abstract

In this paper, we investigate the superconvergence results for optimal control problems governed by parabolic equations with semidiscrete mixed finite element approximation. We use the lowest order mixed finite element spaces to discrete the state and costate variables while use piecewise constant function to discrete the control variable. Superconvergence estimates for both the state variable and its gradient variable are obtained.

Type
Research Article
Copyright
Copyright © Global-Science Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alt, W., On the approximation of infinite optimization problems with an application to optimal control problems, Appl. Math. Opt., 12 (1984), pp. 1527.CrossRefGoogle Scholar
[2] Alt, W. and Machenroth, U., Convergence of finite element approximations to state constrained convex parabolic boundary control problems, SIAM J. Control. Opt., 27 (1989), pp. 718736.CrossRefGoogle Scholar
[3] Arnautu, V. and Neittaanmäki, P., Discretization estimates for an elliptic control problem, Numer. Funct. Anal. Opt., 19 (1998), pp. 431464.Google Scholar
[4] Brandts, J. H., Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68 (1994), pp. 311324.Google Scholar
[5] Brezzi, F., Douglas, J. and Marini, L., Two families of mixed elements for second order elliptic problems, Numer. Math., 88 (1985), pp. 217235.CrossRefGoogle Scholar
[6] Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 350.Google Scholar
[7] Casas, E., Optimal control in coefficients of elliptic equations with state constraints, Appl. Math. Opt., 26 (1992), pp. 2137.CrossRefGoogle Scholar
[8] Chen, H., Ewing, R. and Lazarov, R., Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data, Numer. Math., 78 (1998), pp. 495521.CrossRefGoogle Scholar
[9] Chen, Y., Mixed finite element methods for a strongly nonlinear parabolic problem, J. Comput. Math., 17 (1999), pp. 209220.Google Scholar
[10] Chen, Y., Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Int. J. Numer. Methods. Eng., 75 (2008), pp. 881898.Google Scholar
[11] Chen, Y., Superconvergence of mixed finite element methods for optimal control problems, Math. Comput., 77 (2008), pp. 12691291.CrossRefGoogle Scholar
[12] Chen, Y., Dai, L. and Lu, Z., Superconvergence of rectangular mixed finite element methods for constrained optimal control problem, Adv. Appl. Math. Mech., 2 (2010), pp. 5675.CrossRefGoogle Scholar
[13] Chen, Y., Huang, Y. and Yi, N., A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations, Sci. China. Ser. A. Math., 51 (2008), pp. 13761390.Google Scholar
[14] Chen, Y., Luan, P. and Lu, Z., Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods, Adv. Appl. Math. Mech., 1 (2009), pp. 830844.CrossRefGoogle Scholar
[15] Chen, Y., Yi, N. and Liu, W., A legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46 (2008), pp. 22542275.CrossRefGoogle Scholar
[16] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.Google Scholar
[17] Douglas, J. Jr. and Roberts, J. E., Global estimates for mixed finite element methods for second order elliptic equations, Math. Comput., 44 (1985), pp. 3952.CrossRefGoogle Scholar
[18] Douglas, J. Jr. and Wang, J., Superconvergence of mixed finite element spaces on rectangular domains, Calcolo., 26 (1989), pp. 121134.CrossRefGoogle Scholar
[19] Duran, R., Superconvergence for rectangular mixed finite elements, Numer. Math., 58 (1990), pp. 287298.CrossRefGoogle Scholar
[20] Ewing, R. E., Liu, M. M. and Wang, J., Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), pp. 772787.Google Scholar
[21] Ewing, R. E. and Lazarov, R. D., Superconvergence of the mixed finite element approximations of parabolic problems using rectangular finite elements, East. West. J. Numer. Math., 1 (1993), pp. 199212.Google Scholar
[22] Ewing, R. E., Lazarov, R. D. and Wang, J., Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal., 28 (1991), pp. 10151029.CrossRefGoogle Scholar
[23] Falk, F. S., Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), pp. 2847.CrossRefGoogle Scholar
[24] French, D. A. and King, J. T., Approximation of an elliptic control problem by the finite element method, Numer. Funct. Anal. Opt., 12 (1991), pp. 299315.Google Scholar
[25] Garcia, S.M.F., Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: the continuous-time case, Numer. Methods. Partial. Differential. Equations., 10 (1994), pp. 129147.Google Scholar
[26] Geveci, T., On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 13 (1979), pp. 313328.CrossRefGoogle Scholar
[27] Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1986.CrossRefGoogle Scholar
[28] Haslinger, J. and Neittaanmaki, P., Finite Element Approximation for Optimal Shape Design, John Wiley and Sons, Chichester, UK, 1989.Google Scholar
[29] Hou, L. and Turner, J. C., Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls, Numer. Math., 71 (1995), pp. 289315.Google Scholar
[30] Knowles, G., Finite element approximation of parabolic time optimal control problems, SIAM J. Control. Opt., 20 (1982), pp. 414427.Google Scholar
[31] Kwon, Y. and Milner, F. A., L -error estimates for mixed methods for semilinear second-order elliptic equations , SIAM J. Numer. Anal., 25 (1988), pp. 4653.Google Scholar
[32] Lasiecka, I., Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions, SIAM J. Control. Opt., 22 (1984), pp. 477500.Google Scholar
[33] Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.Google Scholar
[34] Liu, W. and Yan, N., A posteriori error estimates for optimal boundary control, SIAM J. Numer. Anal., 39 (2001), pp. 7399.CrossRefGoogle Scholar
[35] Liu, W. and Yan, N., A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15 (2001), pp. 285309.Google Scholar
[36] Liu, W. and Yan, N., A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93 (2003), pp. 497521.Google Scholar
[37] Lu, Z. and Chen, Y., A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems, Adv. Appl. Math. Mech., 1 (2009), pp. 242256.Google Scholar
[38] Mcknight, R. S. and Borsarge, W. E. Jr., The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control. Opt., 11 (1973), pp. 510524.Google Scholar
[39] Meider, D. and Vexler, B., A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints, SIAM J. Control. Opt., 47(3) (2008), pp. 11501177.CrossRefGoogle Scholar
[40] Meider, D. and Vexler, B., A priori error estimates for space-time finite element discretization of parabolic optimal control problems part II: problems with control constraints, SIAM J. Control. Opt., 47(3) (2008), pp. 13011329.Google Scholar
[41] Meyer, C. and Rösch, A., Superconvergence properties of optimal control problems, SIAM J. Control. Opt., 43(3) (2004), pp. 970985.CrossRefGoogle Scholar
[42] Neittaanmaki, P. and Tiba, D., Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Dekker, M., New York, 1994.Google Scholar
[43] Raviart, P. A. and Thomas, J. M., A mixed finite element method for 2nd order elliptic problems, Math. aspecs of the finite element method, Lec. Notes. Math., 606 (Springer, Berlin, 1977), pp. 292315.Google Scholar
[44] Tiba, D., Lectures on the Optimal Control of Elliptic Equations, University of Jyvaskyla Press, Jyvaskyla, Finland, 1995.Google Scholar
[45] Troltzsch, F., Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems-strong convergence of optimal control, Appl. Math. Opt., 29 (1994), pp. 309329.Google Scholar
[46] Xing, X. and Chen, Y., Error estimates of mixed methods for optimal control problems governed by parabolic equations, Int. J. Numer. Methods. Eng., 75 (2008), pp. 735754.CrossRefGoogle Scholar