Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T02:08:34.270Z Has data issue: false hasContentIssue false

Quasi-Static Linear Thermo-Viscoelastic Process with Irregular Viscous Dissipation

Published online by Cambridge University Press:  18 January 2017

Farid Messelmi*
Affiliation:
Department of Mathematics and LDMM Laboratory, University Ziane Achour de Djelfa, Djelfa 17000, Algeria
Abdelbaki Merouani*
Affiliation:
Department of Mathematics, University of Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria
Hicham Abdelaziz*
Affiliation:
Department of Mathematics, University of Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria
*
*Corresponding author. Email:[email protected] (F. Messelmi), [email protected] (A. Merouani), [email protected] (H. Abdelaziz)
*Corresponding author. Email:[email protected] (F. Messelmi), [email protected] (A. Merouani), [email protected] (H. Abdelaziz)
*Corresponding author. Email:[email protected] (F. Messelmi), [email protected] (A. Merouani), [email protected] (H. Abdelaziz)
Get access

Abstract

We consider a mathematical model which describes the quasi-static evolution of a thermo-viscoelastic linear body with taking into account the effects of internal forces which generate a non linear viscous dissipative function. We derive a variational formulation of the system of equilibrium equation and energy equation. An existence result of weak solutions was obtained in an appropriate function space.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Amassad, A., Fabre, C. and Sofonea, M., A quasistatic viscoplastic contact problem with normal compliance and friction, IMA J. Appl. Math., 69 (2004), pp. 463482.Google Scholar
[2] Boccardo, L., Dall’Aglio, A., Gallouët, T. and Orsina, L., Quasi-linear parabolic equations with measure data, In Proceedings of the International Conference on Nonlinear Differential Equations, Kiev, (1995).Google Scholar
[3] Bonetti, E. and Bonfanti, G., Existence and uniqueness of the solution to 3D thermoviscoelastic system, Electron. J. Differential Equations, 50 (2003), pp. 115.Google Scholar
[4] Brezis, H., Equations et inéquations non linéaires dans les espaces en dualité, Ann. Inst. Fourier, 18(1) (1968), pp. 115175.CrossRefGoogle Scholar
[5] Consiglieri, L., Stationary solution for a Bingham flow with nonlocal frictions, In Mathematical Topics in Fluid Mechanics, Rodrigues, J. F. and Sequeira, A. (eds), Pitman Res. Notes in Math. Longman (1992), pp. 237252.Google Scholar
[6] Duvaut, G. et Lions, J. L., Les Inéquations en Mécanique et en Physique, Dunod, (1976).Google Scholar
[7] Duvaut, G. et Lions, J. L., Transfert de la Chaleur dans un fluide de Bingham dont la viscosité Dépend de la température. J. Funct. Anal., 11 (1972), pp. 85104.Google Scholar
[8] Ky, F., Fixed point and min-max theorems in locally convex topological linear spaces, Proc. Natl. Acad. Sci. USA, 38(2) (1952), pp. 121126.Google Scholar
[9] Fernández-García, J. R., Sofonea, M. and Viaňo, J. M., A frictionless contact problem for Elastic-Viscoplastic materials with normal compliance, Numer. Math., 90 (2002), pp. 689719.Google Scholar
[10] Germain, P., Cours de Mécanique des Milieux Continus, Masson et Cie, Paris, (1973).Google Scholar
[11] Kobayashi, S. and Robelo, N., A coupled analysis of viscoplastic deformation and heat transfer: i theoretical consideration, II applications, Int, J. Mech. Sci., 22 (1980), pp. 699705, pp. 707–718.Google Scholar
[12] Lions, J. L., Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod, (1969).Google Scholar
[13] Lions, J. L. et Magenes, E., Problèmes aux Limites non Homogènes et Applications, Volume I, Dunod, (1968).Google Scholar
[14] Merouani, A. and Messelmi, F., Dynamic evolution of damage in elastic-thermo-viscoplastic materials, Electron. J. Differential Equations, 2010(129) (2010), pp. 115.Google Scholar
[15] Merouani, B., Messelmi, F. and Drabla, S., Dynamical flow of a Bingham fluid with subdifferential boundary condition, An. Univ. Oradea Fasc. Mat, Tome, XVI (2009), pp. 530.Google Scholar
[16] Messelmi, F., Merouani, B. and Bouzeghaya, F., Steady-state thermal Herschel-Bulkley flow with Tresca's friction law, Electron. J. Differential Equations, 2010(46) (2010), pp. 114.Google Scholar
[17] Nečas, J. and Kratochvil, J., On existence of the solution boundary value problems for elastic-inelastic solids, Comment. Math. Univ. Carolinea, 14 (1973), pp. 755760.Google Scholar
[18] Simon, J., Compact sets in the space Lp (0, T, B), Ann. Mt. Pura Appl., 146 (1987), pp. 6496.Google Scholar
[19] Sofonea, M., Quasistatic processes for elastic-viscoplastic materials with internal state variables, Annales Scientifiques de l’Université Clermont-Ferrand 2, Tome 94, Série Mathématiques, n° 25 (1989), pp. 4760.Google Scholar