Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T18:28:09.080Z Has data issue: false hasContentIssue false

A Priori and a Posteriori Error Analysis of the Discontinuous Galerkin Methods for Reissner-Mindlin Plates

Published online by Cambridge University Press:  03 June 2015

Jun Hu*
Affiliation:
LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
Yunqing Huang*
Affiliation:
Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
*
Corresponding author. Email: [email protected]
Get access

Abstract

In this paper, we apply an a posteriori error control theory that we develop in a very recent paper to three families of the discontinuous Galerkin methods for the Reissner-Mindlin plate problem. We derive robust a posteriori error estimators for them and prove their reliability and efficiency.

Type
Research Article
Copyright
Copyright © Global-Science Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arnold, D. N., Brezzi, F., Falk, R. S. and Marini, L. D., Locking-free Reissner-Mindlin elements without reduced integration, Comput. Methods Appl. Mech. Eng., 196 (2007), pp. 36603671.Google Scholar
[2] Arnold, D. N., Brezzi, F. and Marini, L. D., A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate, J. Sci. Comput., 22 (2005), pp. 2545.CrossRefGoogle Scholar
[3] BeirãO da Veiga, L., Chinosi, C., Lovadina, C. and Stenberg, R., A-priori and a posteriori error analysis for the Falk-Tu family of Reissner-Mindlin plate elements, BIT, 48 (2008), pp. 189213.CrossRefGoogle Scholar
[4] Bernardi, C. and Girault, V., A local regularisation operator for triangular and quadrilateral finite elements, SIAM J. Numer. Anal., 35 (1998), pp. 18931916.CrossRefGoogle Scholar
[5] Braess, D., Finite Elements, Cambridge University Press, 1997.CrossRefGoogle Scholar
[6] Brenner, S. C., Korn’s inequalities for piecewise H1 vector fields, Math. Comput., 73 (2004), pp. 10671087.CrossRefGoogle Scholar
[7] Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, Springer Verlag, 2nd Edition, 2002.CrossRefGoogle Scholar
[8] Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991.CrossRefGoogle Scholar
[9] Brezzi, F., Fortin, M. and Stenberg, R., Error analysis of mixed-interpolated elements for Reissner-Mindlin plate, Math. Models Methods Appl. Sci., 1 (1991), pp. 125151.CrossRefGoogle Scholar
[10] Brezzi, F. and Marini, L. D., A nonconforming element for the Reissner-Mindlin plate, Com-put. Struct., 81 (2003), pp. 515522.CrossRefGoogle Scholar
[11] Carstensen, C., Quasi-interpolation and a posteriori error analysis in finite element methods, M2AN, 33 (1999), pp. 11871202.CrossRefGoogle Scholar
[12] Carstensen, C., Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element, SIAM J. Numer. Anal., 39 (2002), pp. 20342044.CrossRefGoogle Scholar
[13] Carstensen, C. and Hu, J., A unifying theory of a posteriori error control for nonconforming finite element methods, Numer. Math., 107 (2007), pp. 473502.CrossRefGoogle Scholar
[14] Carstensen, C. and Hu, J., A posteriori error estimators for conforming MITC elements for Reissner-Mindlin plates, Math. Comput., 77 (2008), pp. 611632.CrossRefGoogle Scholar
[15] Carstensen, C. and Schöberl, J., Residual-based a posteriori error estimate for a mixed Reissner-Mindlin plate finite element, Numer. Math., 103 (2006), pp. 225250.CrossRefGoogle Scholar
[16] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, 1978, reprinted as SIAM Classics in Applied Mathematics, 2002.Google Scholar
[17] Clément, P., Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 9 (1975), pp. 7784.Google Scholar
[18] Hu, J. and Huang, Y. Q., A posteriori error analysis of finite element methods for Reissner-Mindlin plates, SIAM J. Numer. Anal., 47 (2010), pp. 44464472.CrossRefGoogle Scholar
[19] Hu, J., Quadrilateral Locking Free Elements in Elasticity, Doctorate Dissertation (in Chinese), Institute of Computational Mathematics, Chinese Academy of Science, 2004.Google Scholar
[20] Hu, J. and Shi, Z. C., Analysis for quadrilateral MITC elements for the Reissner-Mindlin plate, Math. Comput., 78 (2009), pp. 673711.CrossRefGoogle Scholar
[21] Liberman, E., A posteriori error estimator for a mixed finite element method for Reissner-Mindlin plate, Math. Comput., 70 (2001), pp. 13831396.CrossRefGoogle Scholar
[22] Raviart, P. A. and Thomas, J. M., A mixed finite element method for second order elliptic problems, Proc. Sympos. Mathematical Aspects of the Finite Element Method (Rome, 1975), Lect. Notes Math., 606 (1977), pp. 292315, Springer-Verlag.Google Scholar
[23] Scott, L. R. and Zhang, S. Y., Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput., 54 (1990), pp. 483493.CrossRefGoogle Scholar
[24] Verfürth, R., A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, 1996.Google Scholar