Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T06:15:34.196Z Has data issue: false hasContentIssue false

On the Factors Affecting the Accuracy and Robustness of Smoothed-Radial Point Interpolation Method

Published online by Cambridge University Press:  11 October 2016

Abderrachid Hamrani*
Affiliation:
Research team MISP, LEMI, University of M'Hamed Bougara de Boumerdes, 35000, Algérie PIMM, Arts et Métiers ParisTech, CNRS, 151 bd de l'Hôpital, 75013 Paris, France
Idir Belaidi*
Affiliation:
Research team MISP, LEMI, University of M'Hamed Bougara de Boumerdes, 35000, Algérie
Eric Monteiro*
Affiliation:
PIMM, Arts et Métiers ParisTech, CNRS, 151 bd de l'Hôpital, 75013 Paris, France
Philippe Lorong*
Affiliation:
PIMM, Arts et Métiers ParisTech, CNRS, 151 bd de l'Hôpital, 75013 Paris, France
*
*Corresponding author. Email:[email protected] (A. Hamrani), [email protected] (I. Belaidi), [email protected] (E. Monteiro), [email protected] (P. Lorong)
*Corresponding author. Email:[email protected] (A. Hamrani), [email protected] (I. Belaidi), [email protected] (E. Monteiro), [email protected] (P. Lorong)
*Corresponding author. Email:[email protected] (A. Hamrani), [email protected] (I. Belaidi), [email protected] (E. Monteiro), [email protected] (P. Lorong)
*Corresponding author. Email:[email protected] (A. Hamrani), [email protected] (I. Belaidi), [email protected] (E. Monteiro), [email protected] (P. Lorong)
Get access

Abstract

In order to overcome the possible singularity associated with the Point Interpolation Method (PIM), the Radial Point Interpolation Method (RPIM) was proposed by G. R. Liu. Radial basis functions (RBF) was used in RPIM as basis functions for interpolation. All these radial basis functions include shape parameters. The choice of these shape parameters has been and stays a problematic theme in RBF approximation and interpolation theory. The object of this study is to contribute to the analysis of how these shape parameters affect the accuracy of the radial PIM. The RPIM is studied based on the global Galerkin weak form performed using two integration technics: classical Gaussian integration and the strain smoothing integration scheme. The numerical performance of this method is tested on their behavior on curve fitting, and on three elastic mechanical problems with regular or irregular nodes distributions. A range of recommended shape parameters is obtained from the analysis of different error indexes and also the condition number of the matrix system. All resulting RPIM methods perform very well in term of numerical computation. The Smoothed Radial Point Interpolation Method (SRPIM) shows a higher accuracy, especially in a situation of distorted node scheme.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lee, N. S. and Bathe, K. J., Effects of element distortions on the performance of isoparametric elements, Int. J. Numer. Meth. Eng., 36 (1993), pp. 35533576.Google Scholar
[2] Cueto, E., Sukumar, N., Calvo, B., Martínez, M. A., Cegon¨ino, J. and Doblarë, M., Overview and recent advances in natural neighbour galerkin methods, Archives of Computational Methods in Engineering, 10(4) (2003), pp. 307384.Google Scholar
[3] Slater, J., Electronic energy bands in metals, Phys. Rev., 45 (1934), pp. 794801.CrossRefGoogle Scholar
[4] Frazer, R., Jones, W. and Skan, S., Approximations to functions and to the solutions of differential equations, Great Britain Aero Counc. London. Rep. Memo., 1799(1) (1937), pp. 517549.Google Scholar
[5] Lanczos, C., Trigonometric interpolation of empirical and analytical functions, J. Math. Phys., 17 (1938), pp. 123199.CrossRefGoogle Scholar
[6] Liu, M. B. and Liu, G. R., Smoothed Particle Hydrodynamics (SPH): an overview and recent developments, Archives of Computational Methods in Engineering, 17(1) (2010), pp. 2576.CrossRefGoogle Scholar
[7] Lucy, L., A numerical approach to testing the fission hypothesis, Astron. J., 82 (1977), pp. 10131024.Google Scholar
[8] Nayroles, B., Touzot, G. and Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10(5) (1992), pp. 307318.Google Scholar
[9] Liu, W. K., Jun, S. and Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Eng., 20(8-9) (1995), pp. 10811106.CrossRefGoogle Scholar
[10] Liu, W. K., Chen, Y., Jun, S., Chen, J. S., Belytschko, T., Pan, C., Uras, R. A. and Chang, C. T., Overview and applications of the reproducing Kernel Particle methods, Archives of Computational Methods in Engineering, 3(1) (1996), pp. pp. 380.Google Scholar
[11] Lu, Y., Belytschko, T. and Gu, L., A new implementation of the element free galerkin method, Comput. Methods Appl. Mech. Eng., 113(3-4) (1994), pp. 397414.Google Scholar
[12] Wang, J. G. and Liu, G. R., Radial point interpolation method for elastoplastic problems, Proc. of the 1st Int. Conf. On Structural Stability and Dynamics, (2000), pp. 703708.Google Scholar
[13] Atluri, S. N. and Zhu, T., A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22(2) (1998), pp. 117127.CrossRefGoogle Scholar
[14] Belytschko, T., Lu, Y. and Gu, L., Element-free galerkin methods, Int. J. Numer. Methods Eng., 37(2) (1994), pp. 229256.Google Scholar
[15] Dolbow, J. and Belytschko, T., An introduction to programming the meshless Element Free Galerkin method, Archives of Computational Methods in Engineering, 5(3) (1998), pp. 207241.CrossRefGoogle Scholar
[16] Liu, G. and Gu, Y., A point interpolation method, The 4th Asia-Pacific Conference on Computational Mechanics, Singapore, (1999), pp. 10091014.Google Scholar
[17] Liu, G. R. and Gu, Y. T., A point interpolation method for two-dimensional solids, Int. J. Num. Meth. Eng., 50 (2001), pp. 937951.Google Scholar
[18] Liu, G. and Gu, Y., A matrix triangularization algorithm for the polynomial point interpolation method, Comput. Methods Appl. Mech. Eng., 192(19) (2003), pp. 22692295.CrossRefGoogle Scholar
[19] Beissel, S. and Belytschko, T., Nodal integration of the element-free galerkin method, Comput. Methods Appl. Mech. Eng., 139 (1996), pp. 4974.CrossRefGoogle Scholar
[20] Chen, J., Wu, C., Yoon, S. and You, Y., A stabilized conforming nodal integration for galerkin mesh free methods, Int. J. Num. Meth. Eng., 50 (2001), pp. 435466.Google Scholar
[21] Chen, J., Yoon, S. and Wu, C., Nonlinear version of stabilized conforming nodal integration for galerkin meshfree methods, Int. J. Num. Meth. Eng., 53 (1993), pp. 25872615.Google Scholar
[22] Golberg, M., Chen, C. and Bowman, H., Some recent results and proposals for the use of radial basis functions in the bem, Eng. Anal. Boundary Elements, 23 (1999), pp. 285296.Google Scholar
[23] Boyd, J. and Gildersleeve, K., Numerical experiments on the condition number of the interpolation matrices for radial basis functions, Appl. Numer. Math., 61(4) (2011), pp. 443459.Google Scholar
[24] Chen, J., Hu, W. and Hu, H., Localized radial basis function with partition of unity properties, Progress on Meshless Methods Computational Methods in Applied Sciences, 11 (2009), pp. 3756.Google Scholar
[25] Franke, R., Scattered data interpolation: tests of some methods, Math. Comput., 38(157) (1982), pp. 200292.Google Scholar
[26] Hardy, R., Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 176 (1971), pp. 19051915.Google Scholar
[27] Rippa, S., An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math., 11 (1999), pp. 193210.Google Scholar
[28] Scheuerer, M., An alternative procedure for selecting a good value for the parameter c in refinterpolation, Adv. Comput. Math., 34 (2011), pp. 105126.Google Scholar
[29] Wang, J. and Liu, G., A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Eng., 54(11) (2002), pp. 16231648.CrossRefGoogle Scholar
[30] Wang, J. and Liu, G., On the optimal shape parameters of radial basis func-tions used for 2d meshless methods, Comput. Methods Appl. Mech. Eng., 191(23/24) (2002), pp. 26112630.CrossRefGoogle Scholar
[31] Liu, G., Zhang, G. and Gu, Y., A meshfree radial point interpolation method (RPIM) for three dimensional solids, Comput. Mech., 36(6) (2005), pp. 421430.Google Scholar
[32] Li, L., Zhu, J. and Zhang, S., A hybrid radial boundary node method based on radial basis point interpolation, Eng. Anal. Boundary Elements, 33(11) (2009), pp. 12731283.Google Scholar
[33] Dinis, L., Jorge, R. N. and Belinha, J., Analysis of 3d solids using the natural neighbour radial point interpolation method, Comput. Methods Appl. Mech. Eng., 196(13-16) (2007), pp. 20092028.Google Scholar
[34] Dinis, L., Jorge, R. N. and Belinha, J., Analysis of plates and laminates using the natural neighbour radial point interpolation method, Eng. Anal. Boundary Elements, 32(3) (2008), pp. 267279.Google Scholar
[35] Liu, G. R., Dai, K. Y. and Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput. Mech., 39 (2007), pp. 859877.Google Scholar
[36] Dai, K. Y. and Liu, G. R., Free and forced vibration analysis using the smoothed finite element method (SFEM), J. Sound Vib., 301 (2007), pp. 803820.Google Scholar
[37] Liu, G. R., Nguyen, T. T., Dai, K. Y. and Lam, K. Y., Theoretical aspects of the smoothed finite element method (SFEM), Int. J. Numer. Methods Eng., 71(8) (2007), pp. 902930.Google Scholar
[38] Liu, G. R. and Quek, S. S., The Finite Element Method: A Practical Course, Butterworth-Heinemann, 2013.Google Scholar
[39] Liu, G. R., A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, Int. J. Comput. Methods, 5(2) (2008), pp. 199236.CrossRefGoogle Scholar
[40] Liu, G. R., Zeng, W. and Nguyen-Xuan, H., Generalized stochastic cell-based smoothed finite element method (GS-CS-FEM) for solid mechanics, Finite Elements Anal. Design, 63 (2013), pp. 5161.Google Scholar
[41] Nguyen, Thoi. T., Liu, G. R., Lam, K. Y. and Zhang, G. Y., A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements, Int. J. Numer. Methods Eng., 78 (2009), pp. 324353.Google Scholar
[42] He, Z. C., Liu, G. R., Zhong, Z. H., Wu, S. C., Zhang, G. Y. and Cheng, A. G., An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems, Comput. Methods Appl. Mech. Eng., 199 (2009), pp. 2033.CrossRefGoogle Scholar
[43] Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H. and Lam, K. Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct., 87(12) (2009), pp. 1426.Google Scholar
[44] Wendland, H., Meshless Galerkin methods using radial basis functions, Math. Comput. American Mathematical Society, 68(228) (1999), pp. 15211531.Google Scholar
[45] Wu, Z., Compactly supported positive definite radial functions, Adv. Comput. Math., 4 (1995), pp. 283292.Google Scholar
[46] Schaback, R. and Wendland, H., Characterization and construction of radial basis functions, Multivariate Approximation and Applications, 2001.Google Scholar
[47] Cheng, A. H. D., Golberg, M. A., Kansa, E. J. and Zammito, G., Exponential convergence and Hc Multiquadric collocation method for PDE, Num. Methods PDE, 19(5) (2003), pp. 571594.Google Scholar
[48] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, J. Adv. Comput. Math., 4 (1995), pp. 389396.CrossRefGoogle Scholar
[49] On¨ate, E., Perazzo, F. and Miquel, J., A finite point method for elasticity problems, Comput. Struct., 79(2225) (2001), pp. 21512163.Google Scholar
[50] On¨ate, E., Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems, Comput. Methods Appl. Mech. Eng., 151(12) (1998), pp. 233265.Google Scholar
[51] On¨ate, E., Idelsohn, S., Zienkiewicz, O. C. and Taylor, R. L., A finite point method in computational mechanics. applications to convective transport and fluid flow, Int. J. Numer. Meth. Eng., 39 (1996), pp. 38393866.Google Scholar
[52] Liszka, T. J., Duarte, C. A. M. and Tworzydlo, W. W., hp-meshless cloud method, Comput. Methods Appl. Mech. Eng., 139(14) (1996), pp. 263288.Google Scholar
[53] Liu, G. R. and Trung, N. T., Smoothed Finite Element Method, Taylor and Francis, CRC Press, 2010.Google Scholar
[54] Timoshenko, S. and Goodier, J., Theory of Elasticity, McGraw-Hill, New York, 1970.Google Scholar
[55] Liu, G. R., Meshfree Methods: Moving Beyond the Finite Element Method, 2nd ed. Boca Raton: Taylor and Francis, CRC Press, 2002.CrossRefGoogle Scholar
[56] Liszka, T. J., Duarte, C. A. M. and Tworzydlo, W. W., hp-meshless cloud method, Comput. Methods Appl. Mech. Eng., 1399(1-4), pp. 263288.Google Scholar
[57] Wu, Z., Hermite-Birkhoff interpolation of scattered data by radial basis functions, Approximation Theory and Its Applications, 08-02 (1992), pp. 10009221.Google Scholar
[58] Kansa, E. J., Multiquadricsa scattered data approximation scheme with applications to computational fluid-dynamicsII solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19(8) (1990), pp. 147161.Google Scholar
[59] Liu, X., Liu, G. R., Tai, K. and Lam, K. Y., Radial point interpolation collocation method (RPICM) for partial differential equations, Comput. Math. Appl., 50(8-9) (2005), pp. 14251442.Google Scholar
[60] Chen, W., Fu, Z. J. and Chen, C. S., Recent Advances on Radial Basis Function Collocation Methods, Springer Verlag, 2014.CrossRefGoogle Scholar
[61] Fasshauer, G., Meshfree Approximation Methods with MATLAB, Singapore Hackensack, N. J: World Scientific, 2007.Google Scholar
[62] Gauthier, R. D. and Jahsman, W. E., A quest for micropolar elastic constants, ASME. J. Appl. Mech., 42(2) (1975), pp. 369374.Google Scholar