Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T08:16:10.440Z Has data issue: false hasContentIssue false

Numerical Integration over Pyramids

Published online by Cambridge University Press:  03 June 2015

Chuanmiao Chen*
Affiliation:
Institute of Computer Science, Hunan Normal University, Changsha 410081, Hunan, China
Michal Křížek*
Affiliation:
Institute of Mathematics, Academy of Sciences, CZ-115 67 Prague, Czech Republic
Liping Liu*
Affiliation:
Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada Department of Applied Mathematics, Anhui Agricultural University, Hefei, 230036, Anhui, China
*
Corresponding author. Email: [email protected]
Get access

Abstract

Pyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method. In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.

Type
Research Article
Copyright
Copyright © Global-Science Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bergot, M., Cohen, G. and Duruflé, M., Higher-order finite elements for hybrid meshes using new nodal pyramidal elements, J. Sci. Comput., 42 (2010), pp. 345381.CrossRefGoogle Scholar
[2]Bluck, M. J. and Walker, S. P., Polynomial basis functions on pyramidal elements, Commun. Numer. Meth. Eng., 24 (2008), pp. 18271837.Google Scholar
[3]Chen, C. M. and Xie, Z., Search extension method for multiple solutions of a nonlinear problem, Comput. Math. Appl., 47 (2004), pp. 327343.Google Scholar
[4]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.Google Scholar
[5]Cools, R., Monomial cubature rules since “stroud”: a compilation–part II, J. Comput. Appl. Math., 112 (1999), pp. 2127.CrossRefGoogle Scholar
[6]Cools, R., An encyclopaedia of cubature formulas, J. Complexity, 19 (2003), pp. 445453.Google Scholar
[7]Cools, R. and Rabinowitz, P., Monomial cubature rules since “Stroud”: a compilation, J. Comput. Appl. Math., 48 (1993), pp. 309326.Google Scholar
[8]Coulomb, J. L., Zgainski, F. X. and Maréchal, Y., A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements, IEEE Trans. Mag., 33 (1997), pp. 13621365.Google Scholar
[9]Duffy, M. G., Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal., 19 (1982), pp. 12601262.Google Scholar
[10]Hammer, P. C., Marlowe, O. J. and Stroud, A. H., Numerical integration over simplexes and cones, Math. Tables Aids Comput., 10 (1956), pp. 130137.Google Scholar
[11]Křížek, M. and Neittaanmäki, P., Finite element approximation of variational problems and applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 50, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, New York, 1990.Google Scholar
[12]Liu, L., Davies, K. B., Křížek, M. and Guan, L., On higher order pyramidal finite elements, Adv. Appl. Math. Mech., 3 (2011), pp. 131140.Google Scholar
[13]Liu, L., Davies, K. B., Yuan, K. and Křížek, M., On symmetric pyramidalfinite elements, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 11 (2004), pp. 213227.Google Scholar
[14]Nigam, N. and Phillips, J., Numerical integration for high order pyramidal finite elements, IMA J. Numer. Anal., 32 (2012), pp. 448483.CrossRefGoogle Scholar
[15]Wieners, C., Conforming discretization on tetrahedrons, pyramids, prisms and hexahedrons, Bericht 97/15, Univ. Stuttgart, (1997), pp. 19.Google Scholar