Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T02:34:21.879Z Has data issue: false hasContentIssue false

The Lower Bounds of Eigenvalues by the Wilson Element in Any Dimension

Published online by Cambridge University Press:  03 June 2015

Youai Li*
Affiliation:
College of Computer and Information Engineering, Beijing Technology and Business University, Beijing 10080, China
*
*Corresponding author. Email: [email protected]
Get access

Abstract

In this paper, we analyze the Wilson element method of the eigenvalue problem in arbitrary dimensions by combining a new technique recently developed in [10] and the a posteriori error result. We prove that the discrete eigenvalues are smaller than the exact ones.

Type
Research Article
Copyright
Copyright © Global-Science Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Armentano, M. G. and Duran, R. G., Asymptotic lower bounds for geigenvalues by non-conforming finite element methods, ETNA., 17 (2004), pp. 93101.Google Scholar
[2] Babuska, I. and Osborn, J. E., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problem, Math. Comput., 52 (1989), pp. 275297.CrossRefGoogle Scholar
[3] Babuska, I. and Osborn, J. E., Eigenvalue Problems, in Handbook of Numerical Analysis V-II: Finite Element Methods (Part I), Edited by Ciarlet, P.G. and Lions, J. L., 1991, Elsevier.Google Scholar
[4] Bergh, J. and Löfström, J., Interpolation Spaces An Introduction, Springer-Verlag Berlin Heidelberg, 1976.CrossRefGoogle Scholar
[5] Brenner, S. C. and Scott, L. R., The Mathematical Theorey of Finite Element Methods, Springer-Verlag, 1996.Google Scholar
[6] Carstensen, C. and Hu, J., A unifying theory of a posteriori error control for nonconforming finite-element methods, Numer. Math., 107 (2007), pp. 473502.CrossRefGoogle Scholar
[7] Duran, R. G., Gastaldi, L. and Padra, C., A posteriori error estimator for mixed approximation of eigenvalue problems, Math. Models. Methods. Appl. Sci., 9 (1999), pp. 11651178.CrossRefGoogle Scholar
[8] Hu, J., Analysis for a Kind of Meshless Galerkin Method and the Lower Approximation of Eigenvalues (in Chinese), Master Thesis, Xiangtan University, 2001.Google Scholar
[9] Hu, J., Huang, Y. Q. and Shen, H. M., The lower approximation of eigenvalue by lumped mass finite element methods, J. Comput. Math., 22 (2004), pp. 545556.Google Scholar
[10] Hu, J. and Huang, Y. Q., The analysis of the lower approximatin of eigenvalues by the Adini element, preprint, 2010.Google Scholar
[11] Li, Y. A., Lower approximation of eigenvalue by the nonconforming finite element method, Math. Numer., 30 (2008), pp. 195200.Google Scholar
[12] Li, Y. A., A posteriori error analysis of nonconforming methods for the eigenvalue problem, J. Syst. Sci. Complex., 22 (2009), pp. 495502.CrossRefGoogle Scholar
[13] Lin, Q., Huang, H. T. and Li, Z. C., New expansions of numerical eigenvalues by Wilson’s element, J. Comput. Appl. Math., 225 (2009), pp. 213226.CrossRefGoogle Scholar
[14] Lin, Q. and Lin, J., Finite Element Methods: Accuracy and Improvements, Science Press, Beijing, 2006.Google Scholar
[15] Liu, H. P. and Yan, N. N., Four finite element solutions and comparison of problem for the poisson equation eigenvalue, J. Numer. Meth. Comput. Appl., 2 (2005), pp. 8191.Google Scholar
[16] Shi, Z. C., A convergence condition for the quadrilateral Wilson element, Numer. Math., 44 (1984), pp. 349361.CrossRefGoogle Scholar
[17] Shi, Z. C. and Wang, M., The Finite Element Method, Science Press, Beijing, 2010.Google Scholar
[18] Wilson, E. L., Taylor, R. L., Doherty, W. P. and Ghaboussi, J., Incompatible displacement methods, in: Fenves, S. J. (Ed.), Numerical and Computer Methods in Structural Mechanics, Academic Press, New York, 1973, pp. 4357.Google Scholar
[19] Yang, Y. D. and Bi, H., Lower spectral bounds by Wilson’s brick discretization, Appl. Numer. Math., 60 (2010), pp. 782787.CrossRefGoogle Scholar
[20] Yang, Y. D., Zhang, Z. M. and Lin, F. B., Eigenvalue approximation from below using nonforming finite elements, Sci. China. Ser. A., 53 (2010), pp. 137150.CrossRefGoogle Scholar
[21] Zhang, Z., Yang, Y. and Chen, Z., Eigenvalue approximation from below by Wilson’s elements, J. Numer. Math. Appl., 29 (2007), pp. 8184.Google Scholar