Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T18:24:15.276Z Has data issue: false hasContentIssue false

Hamiltonian Boundary Value Method for the Nonlinear Schrödinger Equation and the Korteweg-de Vries Equation

Published online by Cambridge University Press:  18 January 2017

Mingzhan Song*
Affiliation:
College of Science and State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, Hunan 410073, China
Xu Qian*
Affiliation:
College of Science and State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, Hunan 410073, China
Hong Zhang*
Affiliation:
College of Science and State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, Hunan 410073, China
Songhe Song*
Affiliation:
College of Science and State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, Hunan 410073, China
*
*Corresponding author. Email:[email protected] (M. Song), [email protected] (X. Qian), [email protected] (H. Zhang), [email protected] (S. H. Song)
*Corresponding author. Email:[email protected] (M. Song), [email protected] (X. Qian), [email protected] (H. Zhang), [email protected] (S. H. Song)
*Corresponding author. Email:[email protected] (M. Song), [email protected] (X. Qian), [email protected] (H. Zhang), [email protected] (S. H. Song)
*Corresponding author. Email:[email protected] (M. Song), [email protected] (X. Qian), [email protected] (H. Zhang), [email protected] (S. H. Song)
Get access

Abstract

In this paper, we introduce the Hamiltonian boundary value method (HBVM) to solve nonlinear Hamiltonian PDEs. We use the idea of Fourier pseudospectral method in spatial direction, which leads to the finite-dimensional Hamiltonian system. The HBVM, which can preserve the Hamiltonian effectively, is applied in time direction. Then the nonlinear Schrödinger (NLS) equation and the Korteweg-de Vries (KdV) equation are taken as examples to show the validity of the proposed method. Numerical results confirm that the proposed method can simulate the propagation and collision of different solitons well. Meanwhile the corresponding errors in Hamiltonian and other intrinsic invariants are presented to show the good preservation property of the proposed method during long-time numerical calculation.

MSC classification

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] McLachlan, R., Symplectic integration of Hamiltonian wave equations, Numerische Mathematik, 66(1) (1993), pp. 465492.Google Scholar
[2] Feng, K. and Qin, M. Z., Symplectic difference schemes for Hamiltonian systems, in Symplectic Geometric Algorithms for Hamiltonian Systems, Springer Berlin Heidelberg, (2010), pp. 187211.Google Scholar
[3] Dahlby, M., Owren, B. and Yaguchi, T., Preserving multiple first integrals by discrete gradients, J. Phys. A Math. Theor., 44(30) (2011), 305205.Google Scholar
[4] Quispel, G. R. W. and McLaren, D. I., A new class of energy-preserving numerical integration methods, J. Phys. A Math. Theor., 41(4) (2008), 045206.Google Scholar
[5] Brugnano, L., Iavernaro, F. and Trigiante, D., Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Industrial Appl. Math., 5(1-2) (2010), pp. 1737.Google Scholar
[6] Brugnano, L. and Iavernaro, F., Line integral methods which preserve all invariants of conservative problems, J. Comput. Appl. Math., 236(16) (2012), pp. 39053919.Google Scholar
[7] Bridges, T. J. and Reich, S., Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184193.CrossRefGoogle Scholar
[8] Zhu, H. J., Tang, L. Y., Song, S. H., Tang, Y. F. and Wang, D. S., Symplectic wavelet collocation method for Hamiltonian wave equations, J. Comput. Phys., 229 (2010), pp. 25502572.Google Scholar
[9] Qian, X., Song, S. H. and Gao, E., Explicit multi-symplectic method for the Zakharov-Kuznetsov equation, Chinese Phys. B, 21(7) (2012), pp. 4348.CrossRefGoogle Scholar
[10] Li, H. C., Sun, J. Q. and Qin, M., Multi-symplectic method for the Zakharov-Kuznetsov equation, Adv. Appl. Math. Mech., 7(1) (2015), pp. 5873.Google Scholar
[11] Qian, X., Song, S. H. and Chen, Y. M., A semi-explicit multi-symplectic splitting scheme for a 3-coupled nonlinear Schrödinger equation, Comput. Phys. Commun., 185(4) (2014), pp. 12551264.Google Scholar
[12] Takaharu, Y., Matsuo, T. and Sugihara, M., The discrete variational derivative method based on discrete differential forms, J. Comput. Phys., 231(10) (2012), pp. 39633986.Google Scholar
[13] Miyatake, Y. and Matsuo, T., Conservative finite difference schemes for the Degasperis-Procesi equation, J. Comput. Appl. Math., 236(15) (2012), pp. 37283740.Google Scholar
[14] Hairer, E., Energy-preserving variant of collocation methods, J. Numer. Anal. Industrial Appl. Math., 5 (2010), pp. 7384.Google Scholar
[15] Miyatake, Y., An energy-preserving exponentially-fitted continuous stage Runge-Kutta method for Hamiltonian systems, BIT Numer. Math., 54(3) (2014), pp. 777799.CrossRefGoogle Scholar
[16] Celledoni, E., Grimm, V., McLachlan, R. I., McLaren, D. I., O’Neale, D., Owren, B. and Quispel, G. R. W., Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method, J. Comput. Phys., 230(20) (2012), pp. 67706789.Google Scholar
[17] Zhang, H. and Song, S. H., Average vector field methods for the coupled Schrödinger KdV equations, Chinese Phys. B, 23(7) (2014), pp. 242250.Google Scholar
[18] Cai, J. X., Wang, Y. S. and Gong, Y. Z., Numerical analysis of AVF methods for three-dimensional time-domain Maxwell's equations, J. Sci. Comput., (2015), pp. 136.Google Scholar
[19] Karasozen, B. and Simsek, G., Energy preserving integration of bi-Hamiltonian partial differential equations, Appl. Math. Lett., 26(12) (2013), pp. 11251133.CrossRefGoogle Scholar
[20] Brugnano, L., Caccia, G. F. and Iavernaro, F., Energy conservation issues in the numerical solution of the semilinear wave equation, Appl. Math. Comput., 270(C) (2015), pp. 842870.Google Scholar
[21] Brugnano, L. and Sun, Y. J., Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems, Numer. Algorithms, 65(3) (2014), pp. 611632.CrossRefGoogle Scholar
[22] Chen, Y. M., Song, S. H. and Zhu, H. J., Explicit multi-symplectic splitting methods for the nonlinear Dirac equation, Adv. Appl. Math. Mech., 6(4) (2014), pp. 494514.Google Scholar
[23] Chen, Y. M., Song, S. H. and Zhu, H. J., Multi-symplectic methods for the Ito-type coupled KdV equation, Appl. Math. Comput., 218(9) (2012), pp. 55525561.Google Scholar
[24] Chen, J. B. and Qin, M. Z., Multi-symplectic fourier pseudospectral method for the nonlinear Schrödinger equation, Electronic Transactions on Numerical Analysis, 12 (2001), pp. 193204.Google Scholar
[25] Ascher, U. M. and McLachlan, R. I., On symplectic and multisymplectic schemes for the KdV equation, J. Sci. Comput., 25(1) (2005), pp. 83104.Google Scholar
[26] Wei, L. L., He, Y. N. and Zhang, X. D., Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Kdv equation, Adv. Appl. Math. Mech., 7(4) (2015), pp. 510527.CrossRefGoogle Scholar
[27] Kieri, E., Kreiss, G. and Runborg, O., Coupling of Gaussian beam and finite difference solvers for semiclassical Schrödinger equations, Adv. Appl. Math. Mech., 7(6) (2015), pp. 687714.Google Scholar