Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T19:13:39.876Z Has data issue: false hasContentIssue false

Error Estimates and Superconvergence of Mixed Finite Element Methods for Optimal Control Problems with Low Regularity

Published online by Cambridge University Press:  03 June 2015

Yanping Chen*
Affiliation:
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
Tianliang Hou*
Affiliation:
Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Department of Mathematics, Xiangtan University, Xiangtan 411105, Hunan, China
Weishan Zheng*
Affiliation:
School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
*
Corresponding author. URL: http: //math.xtu.edu.cn/myphp/math/ypchen/index.htm, Email: [email protected]
Get access

Abstract

In this paper, we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. We derive L2 and L-error estimates for the control variable. Moreover, using a recovery operator, we also derive some superconvergence results for the control variable. Finally, a numerical example is given to demonstrate the theoretical results.

Type
Research Article
Copyright
Copyright © Global-Science Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bonnans, J. F. and Casas, E., An extension of Pontryagin’s principle for state constrained optimal control of semilinear elliptic eqnation and variational inequalities, SIAM J. Control Optim., 33 (1995), pp. 274298.Google Scholar
[2]Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.Google Scholar
[3]Chen, Y., Superconvergence of mixed finite element methods for optimal control problems, Math. Comput., 77 (2008), pp. 12691291.Google Scholar
[4]Chen, Y., Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Int. J. Numer. Meths. Eng., 75(8) (2008), pp. 881898.Google Scholar
[5]Chen, Y. and Dai, Y., Superconvergence for optimal control problems governed by semi-linear elliptic equations, J. Sci. Comput., 39 (2009), pp. 206221.CrossRefGoogle Scholar
[6]Chen, Y.-P., Dai, L. and Lu, Z.-L., Superconvergence of rectangular mixed finite element methods for constrained optimal control problem, Adv. Appl. Math. Mech., 2 (2010), pp. 5675.CrossRefGoogle Scholar
[7]Chen, Y.-P.Hou, T.-L., Superconvergence and L-error estimates of RT1 mixed methods for semilinear elliptic control problems with an integral constraint, Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 423446.Google Scholar
[8]Chen, Y., Huang, Y., Liu, W. B. and Yan, N., Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42(3) (2009), pp. 382403.Google Scholar
[9]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.Google Scholar
[10]Douglas, J. and Roberts, J. E., Global estimates for mixed finite element methods for second order elliptic equations, Math. Comput., 44 (1985), pp. 3952.Google Scholar
[11]Gunzburger, M. D. and Hou, S. L., Finite dimensional approximation of a class of constrained nonlinear control problems, SIAM J. Control Optim., 34 (1996), pp. 10011043.Google Scholar
[12]Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston-London Melbourne, 1985.Google Scholar
[13]Hou, L. and Turner, J. C., Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls, Numer. Math., 71 (1995), pp. 289315.Google Scholar
[14]Huang, Y.-Q., Qin, H.-F., Wang, D.-S. and Du, Q., Convergent adaptive finite element method based on Centroidal Voronoi Tessellations and superconvergence, Commun. Comput. Phys., 10 (2011), pp. 339370.Google Scholar
[15]Knowles, G., Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim., 20 (1982), pp. 414427.Google Scholar
[17]Li, R., Liu, W., Ma, H. and Tang, T., Adaptive finite element approximation of elliptic control problems, SIAM J. Control Optim., 41 (2002), pp. 13211349.Google Scholar
[18]Li, R., Liu, W. B. and Yan, N., A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 41(5) (2002), pp. 13211349.Google Scholar
[19]Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.Google Scholar
[20]Liu, T., Yan, N. and Zhang, S.H., Richardson extrapolation and defect correction of finite element methods for optimal control problem, J. Comput. Math., 28 (2010), pp. 5571.Google Scholar
[21]Meyer, C. and Rösch, A., Superconvergence properties of optimal control problems, SIAM J. Control Optim., 43(3) (2004), pp. 970985.CrossRefGoogle Scholar
[22]Meyer, C. and Rösch, A., L-error estimates for approximated optimal control problems, SIAM J. Control Optim., 44 (2005), pp. 16361649.Google Scholar
[23]Meider, D. and Vexler, B., A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints, SIAM J. Control Optim., 47 (2008), pp. 11501177.Google Scholar
[24]Meider, D. and Vexler, B., A priori error estimates for space-time finite element discretization of parabolic optimal control problems part II: problems with control constraints, SIAM J. Control Optim., 47 (2008), pp. 13011329.Google Scholar
[25]Mckinght, R. S. and Borsarge, J., The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control Optim., 11 (1973), pp. 510542.Google Scholar
[26]Niu, H.-F. and Yang, D.-P., Finite element analysis of optimal control problem governed by Stokes equations with L2-norm state-constraints, J. Comput. Math., 29 (2011), pp. 589604.Google Scholar
[27]Raviart, P. A. and Thomas, J. M., A mixed finite element method for 2nd order elliptic problems, aspecs of the finite element method, Lecture Notes In Math, Springer, Berlin, 606 (1977), pp. 292315.Google Scholar
[28]Ryu, S., Kim, S. D. and H.-C. LEE, First-order system least-squares methods for a flux control problem by the Stokes flow, Commun. Comput. Phys., 7 (2010), pp. 738758.Google Scholar
[29]Tang, Y.-L. and Chen, Y.-P., Recovery type a posteriori error estimates of fully discrete finite element methods for general convex parabolic optimal control problems, Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 573591.Google Scholar
[30]Xing, X.-Q. and Chen, Y.-P., Superconvergence of parabolic optimal control problems, Adv. Appl. Math. Mech., 3 (2011), pp. 401419.Google Scholar
[31]Yang, D., Chang, Y. and Liu, W., A priori error estimates and superconvergence analysis for an optimal control problems of bilinear type, J. Comput. Math., 4 (2008), pp. 471487.Google Scholar
[32]Yan, N., Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations, Appl. Math., 54 (2009), pp. 267283.Google Scholar