No CrossRef data available.
Article contents
A Priori Error Estimates of Crank-Nicolson Finite Volume Element Method for Parabolic Optimal Control Problems
Published online by Cambridge University Press: 03 June 2015
Abstract
In this paper, the Crank-Nicolson linear finite volume element method is applied to solve the distributed optimal control problems governed by a parabolic equation. The optimal convergent order O(h2+k2) is obtained for the numerical solution in a discrete L2-norm. A numerical experiment is presented to test the theoretical result.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Global-Science Press 2013
References
[1]Adams, R.A., Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.Google Scholar
[2]Chatzipantelidis, P., Lazarov, R. and Thomée, V., Error estimate for a finite volume element method for parabolic equations in convex polygonal domains, Numer. Methods Partial Differential Equations, 20 (2004), pp. 650–674.Google Scholar
[3]Chen, Y., Superconvergence of mixed finite element methods for optimal control problems, Math. Comput., 77(263) (2008), pp. 1269–1291.CrossRefGoogle Scholar
[4]Chen, Y., Huang, Y., Liu, W. B. and Yan, N. N., Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42(3) (2010), pp. 382–403.Google Scholar
[5]Chen, Y., Huang, Y. and Yi, N., A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations, Sci. China Series A Math, 51 (2008), pp. 1376–1390.CrossRefGoogle Scholar
[6]Chen, Y. and Liu, W. B., Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Model., 3 (2006), pp. 311–321.Google Scholar
[7]Chen, Y. and Lu, Z., Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems, Comput. Methods Appl. Mech. Eng., 199 (2010), pp. 1415–1423.CrossRefGoogle Scholar
[8]Chen, Y., Yi, N. and Liu, W. B., A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46(5) (2008), pp. 2254–2275.Google Scholar
[9]Chou, S. H. and Li, Q., Error estimates in L2, H and L2 in covolume methods for elliptic and parabolic problems: a unified approach, Math. Comput., 69 (2000), pp. 103–120.Google Scholar
[10]Collis, S. and Heinkenschloss, M., Analysis of the streamline upwind/Petrov Galerkin method applied to the solution of optimal control problems, CAAM TR02-01, March 2002.Google Scholar
[11]Ewing, R. E., Lin, T. and Lin, Y., On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39(6) (2002), pp. 1865–1888.Google Scholar
[12]Hinze, M., A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Opt. Appl., 30(1) (2005), pp. 45–61.Google Scholar
[13]Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.CrossRefGoogle Scholar
[14]Liu, W. B. and Yan, N., Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Science Press, Beijing, 2008.Google Scholar
[15]Rincon, A. and Liu, I-Shih, On numerical approximation of an optimal control problem in linear elasticity, Divulgaciones Mateméticas, 11(2) (2003), pp. 91–107.Google Scholar
[16]Luo, X., Chen, Y., Y.Huang, et al., Some error estimates of finite volume element method for parabolic optimal control problems, Optim. Control Appl. Meth., 2012, Doi:10.1002/oca.2059.Google Scholar