Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T12:57:21.609Z Has data issue: false hasContentIssue false

Lattice Boltzmann Study of Non-Newtonian Blood Flow in Mother and Daughter Aneurysm and a Novel Stent Treatment

Published online by Cambridge University Press:  03 June 2015

Y. Shi
Affiliation:
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shanxi, China
G. H. Tang*
Affiliation:
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shanxi, China
W. Q. Tao
Affiliation:
MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shanxi, China
*
*Corresponding author. Email: [email protected]
Get access

Abstract

Understanding blood flow in human body’s cerebral arterial system is of both fundamental and practical significance for prevention and treatment of vascular diseases. The mechanism and treatment for the growth of daughter aneurysm on its mother aneurysm are not yet fully understood. Themain purpose of the present paper is to elucidate the relationships between hemodynamics and the genesis, growth, subsequent rupture of the mother and daughter aneurysm on the cerebral vascular. The intensified stents with different porosities and structures are investigated to reduce the wall shear stress and pressure of mother and daughter aneurysm. The simulation is based on a lattice Boltzmann modeling of non-Newtonian blood flow. A novel stent structurewith “dense in front and sparse in rear” is proposed,which is verified to have good potential to reduce the wall shear stress of both mother and daughter aneurysm. The simulation is based on a lattice Boltzmann modeling of non-Newtonian blood flow. A novel stent structurewith “dense in front and sparse in rear” is proposed,which is verified to have good potential to reduce the wall shear stress of both mother and daughter aneurysm.

Type
Research Article
Copyright
Copyright © Global-Science Press 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Humphrey, J. D. and Taylor, C. A., Intracranial and abdominal aortic aneurysms: similarities, differences, and need for anew class of computational models, Annu. Rev. Biomed. Eng., 10 (2008), pp.221246.CrossRefGoogle Scholar
[2]Foutrakis, G. N., Yonas, H. AND Sclabassi, R. J., Saccular aneurysm formation in curved and bifurcating arteries, Am. J. Neuroradiol., 20 (1999), pp. 13091317.Google ScholarPubMed
[3]Yu, S. C. M. and Zhao, J. B., A steady flow analysis on the stented and non-stented sidewall aneurysm models, Med. Eng. Phys., 21 (1999), pp. 133141.Google Scholar
[4]King, R. M., Chueh, J. Y., Van Der Bom, I. M. J., Silva, C. F., Carniato, S. L., Spilberg, G., Wakhloo, A. K. and Gounis, M. J., The effect of intracranial stent implantation on the curvature of the cerebrovasculature, Am. J. Neuroradiol., 33 (2012), pp. 16571662.Google Scholar
[5]Fang, H. P., Wang, Z. W., Lin, Z. F. AND Liu, M. R., Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels, Phys. Rev. E, 65 (2002), 051925.Google Scholar
[6]Hoekstra, A. G., Hoff, Jos Van’t, Artoli, A. M. and Sloot, P. M. A., Unsteady flow in a 2D elastic tube with the LBGK method, Future Gener. Comput. Syst., 20 (2004), pp. 917924.Google Scholar
[7]Sun, C. H., Migliorini, C. and Munn, L. L., Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis, Biophys. J., 85 (2003), pp. 208222.Google Scholar
[8]Wakhloo, A. K., Schellhammer, F., De Vries, J., Haberstroh, J. and Schumacher, M., Self-expanding and balloon-expandable stents in the treatment of carotid aneurisms: an experimental study in a canine model, Am. J. Neuroradiol., 15 (1994), pp. 493502.Google Scholar
[9]Ashrafizaadeh, M. and Bakhshaei, H., A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations, Comput. Math. Appl., 58 (2009), pp. 10451054.Google Scholar
[10]Perktold, K., Kenner, T., Hilbert, D., Spork, B. and Florian, H., Numerical blood flow analysis: arterial bifurcation with a saccular aneurysm, Basic Res. Cardiol., 83 (1988), pp. 2431.Google Scholar
[11]Berger, S. A. and Jou, L. D., Flows in stenotic vessels, Annu. Rev. Fluid Mech., 32 (2000), pp. 347382.Google Scholar
[12]Sforza, D. M., Putman, C. M. and Cebral, J. R., Hemodynamics of cerebral aneurysms, Annu. Rev. Fluid Mech., 41 (2009), pp. 91107.Google Scholar
[13]Aenis, M., Stancampiano, A. p., Wakhloo, A. K. and Lieber, B. B., Modeling of flow in a straight stented and nonstented side wall aneurysm model, ASME J. Biomech. Eng., 119 (1997), pp.206212.Google Scholar
[14]Hoi, Y., Meng, H., S.Woodward, H., Bendok, B. R., Hanel, R. A., Guterman, L. R. and Hopkins, L. N., Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study, J. Neurosurg., 101 (2004), pp. 676681.Google Scholar
[15]Schirmer, C. M. and Malek, A. M., Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow, Neurosurgery, 61 (2007), pp. 853864.Google Scholar
[16]Steinman, D. A. AND Taylor, C. A., Flow imaging and computing: large artery hemodynamics, Annu. Biomed. Eng., 33 (2005), pp. 17041709.Google Scholar
[17]Cebral, J. R., Sheridan, M. and Putman, C. M., Hemodynamics and bleb formation in intracranial aneurysms, Am. J. Neuroradiol., 31 (2010), pp. 304310.Google Scholar
[18]Barath, K., Cassot, F., Fasel, J. H. D., Ohta, M. and Rufenacht, D. A., Influence of stent properties on the alteration of cerebral intra-aneurysmal haemodynamics: flow quantification in elastic sidewall aneurysm model, Neurol. Res., 27 (2005), pp. 120128.CrossRefGoogle Scholar
[19]Hirabayashi, M., Ohta, M., Rufenacht, D. A. and Chopard, B., A lattice Boltzmann study of blood flow in stented aneurism, Future Gener. Comput. Syst., 20 (2004), pp. 925934.Google Scholar
[20]Hassan, T., Ezura, M., Timofeev, E. V., Tominaga, T., Saito, T., Takahashi, A., Takayama, K. AND Yoshimoto, T., Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm, Am. J. Neuroradiol., 25 (2004), pp. 6368.Google Scholar
[21]Aharonov, E. AND Rothman, D. H., Non-Newtonian flow (through porous media): a lattice Boltzmann method, Geophys. Res. Lett., 20 (1993), pp. 679682.Google Scholar
[22]Qu, K., Shu, C. and Chew, Y. T., Lattice Boltzmann and finite volume simulation of inviscid compressible flows with curved boundary, Adv. Appl. Math. Mech., 2 (2010), pp. 573586.Google Scholar
[23]Qian, Y. H., D’Humieres, D. and Lallemand, p., Lattice BGK models for Navier-Stokes equation, Europhy s. Lett., 17 (1992), pp. 479484.Google Scholar
[24]Artoli, A. M., Mesoscopic Computational Haemodynamics, Ph.D. Thesis, University of Amsterdam, Ponsen and Looijen, Wageningen, 2003.Google Scholar
[25]Tang, G. H., Li, X. F., He, Y. L. and Tao, W. Q., Electroosmotic flow of non-Newtonian fluid in microchannels, J. Non-Newton. Fluid Mech., 157 (2009), pp. 133137.Google Scholar
[26]Sullivan, S. P., Gladden, L. F. and Johns, M. L., Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques, J. Non-Newton. Fluid Mech., 133 (2006), pp. 9198.Google Scholar
[27]Rakotomalala, N., Salin, D. and Watzky, P., Simulations of viscous flows of complex fluids with a Bhatnagar, Gross, and Krook lattice gas, Phys. Fluids, 8 (1996), pp. 32003202.CrossRefGoogle Scholar
[28]Chai, Z. H., Shi, B. C., Guo, Z. L. and Rong, F. M., Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows, J. Non-Newton. Fluid Mech., 166 (2011), pp. 332342.Google Scholar
[29]Gabbanelli, S., Drazer, G. and Koplik, J., Lattice Boltzmann method for non-Newtonian (power-law) fluids, Phys. Rev. E, 72 (2005), 046312.Google Scholar
[30]Johnston, B. M., Johnston, P. R., Corney, S. and Kilpatrick, D., Non-Newtonian blood flow in human right coronary arteries: steady state simulations, J. Biomech., 37 (2004), pp. 709720.Google Scholar
[31]Artoli, A. M., Kandhai, D., Hoefsloot, H. C. J., Hoekstra, A. G. and Sloot, P. M. A., Lattice BGK simulations of flow in a symmetric bifurcation, Future Gener. Comput. Syst., 20 (2004), pp. 909916.Google Scholar
[32]Meng, H., Wang, Z. J., Hoi, Y. M., Gao, L., Metaxa, E., Swartz, D. D. and Kolega, J., Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation, Stroke, 38 (2007), pp. 19241931.Google Scholar
[33]Zou, Q. S. and He, X. Y., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9 (1997), pp. 15911598.Google Scholar
[34]He, X. Y., Zou, Q. S., Luo, L. s. AND Dembo, M., Analytic solutions of simple flows and analysis of non-slip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys., 87 (1997), pp. 115136.CrossRefGoogle Scholar
[35]Tateshima, S., Murayama, Y., Villablanca, J. P., Morino, T., Nomura, K., Tanishita, K. and Vinuela, F., In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs, Stroke, 34 (2003), pp. 187192.Google Scholar