Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T13:02:10.256Z Has data issue: false hasContentIssue false

Tools for evaluating and regulating nitrogen impacts in livestock farming systems

Published online by Cambridge University Press:  25 September 2014

C. Bockstaller*
Affiliation:
INRA, Research Unit 1121 Agronomy and Environment (LAE), F-68021Colmar, France
F. Vertès
Affiliation:
INRA, Research Unit 1069 Agro Soil and Hydrosystem Spatialisation (SAS), F-35042 Rennes Cedex, France
J.-L. Fiorelli
Affiliation:
INRA, Research Unit 0055 Mirecourt Agro-Systems, Territories, Resources (ASTER), F-88500 Mirecourt, France
P. Rochette
Affiliation:
Agriculture and AgriFood Canada, Quebec City, G1V 2J3Canada
H. F. M. Aarts
Affiliation:
Plant Research International, WUR, Agrosysteemkunde, Wageningen, The Netherlands
*
E-mail: [email protected]
Get access

Abstract

This article describes several indicators and methods for estimating nitrogen flows and balance sheets. It reviews their strengths and weaknesses according to user types and their objectives. The nitrogen balance sheets, based on the difference between inputs and outputs are by far the most-often used estimator of nitrogen management on livestock farms. Among those, the soil surface balance helps in guiding the fertilisation and the farmgate balance is logically higher. The indicators of practices are easy to use but are poor predictors of nitrogen losses, whereas the indicators of emissions allow for estimating nitrogen losses using either direct measurements or models thereby providing a dynamic assessment of these flows. The coupling of balance sheets and indicators of emissions offers a certain potential for improvement of diagnosis and support of decision making. Finally, the indicators of impacts, including the life cycle analyses are currently the most popular for qualifying the impacts of animal production.

Type
Full Paper
Copyright
© The Animal Consortium 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bockstaller, C, Guichard, L, Makowski, D, Aveline, A, Girardin, P and Plantureux, S 2008. Agri-environmental indicators to assess cropping and farming systems. A review. Agronomy for Sustainaible Development 28, 139149.Google Scholar
Bockstaller, C and Girardin, P 2006. Evaluation agri-environnementale des systèmes de culture: la méthode INDIGO®. Oléoscope 85, 46.Google Scholar
Bockstaller, C, Guichard, L, Keichinger, O, Girardin, P, Galan, MB and Gaillard, G 2009. Comparison of methods to assess the sustainability of agricultural systems. A review. Agronomy for Sustainable Development 29, 223235.CrossRefGoogle Scholar
Bockstaller, C, Gaillard, G, Baumgartner, D, Freiermuth Knuchel, R, Reinsch, M, Brauner, R and Unterseher, E 2006. Méthodes d’évaluation agri-environnementale des exploitations agricoles: Ccomparaison des méthodes INDIGO, KUL/USL, REPRO et SALCA. ITADA, Colmar. 112pp.Google Scholar
Bockstaller, C, Lassere-Joulin, F, Slezack-Deschaumes, S, Piutti, S, Villerd, J, Amiaud, B and Plantureux, S 2011. Assessing biodiversity in arable farmland by means of indicators: an overview. Oléagineux Corps Gras Lipides 18, 137144.Google Scholar
Cannavo, P, Recous, S, Parnaudeau, V and Reau, R 2008. Modeling N dynamics to assess environmental impacts of cropped soils. Advances in Agronomy 97, 131174.Google Scholar
Corpen 2006. Des indicateurs AZOTE pour gérer des actions de maîtrise des pollutionsà l'échelle de la parcelle, de l'exploitation et du territoire, Paris, Ministère de l'Ecologie et du Développement Durable. Retrieved March 2011 from http://www.ecologie.gouv.fr/IMG/pdf/maquette_azote29_09.pdf, 113p.Google Scholar
De Vries, W, Leip, A, Reinds, GJ, Kros, J, Lesschen, JP, Bouwman, AF, Grizzetti, B, Bouraoui, F, Butterbach-Bahl, K, Bergamaschi, P and Winiwarter, W 2011. Geographical variation in terrestrial nitrogen budgets across Europe. In The European Nitrogen Assessment. Sources, effects and policy perspectives (ed. MA, Sutton, CM, Howard, JW, Erisman et al.), pp. 317344. Cambridge University Press, Cambridge.Google Scholar
Durand, P 2004. Simulating nitrogen budgets in complex farming systems using INCA: calibration and scenario analyses for the Kervidy catchment (W. France). Hydrology and Earth System Sciences 8, 793802.CrossRefGoogle Scholar
EEA 2005. Agriculture and environment in EU-15; the IRENA indicator report. Copenhagen: European Environmental Agency (EEA), 128p.Google Scholar
Girardin, P, Bockstaller, C and Van der Werf, HMG 1999. Indicators: tools to evaluate the environmental impacts of farming systems. Journal of Sustainable Agriculture 13, 521.CrossRefGoogle Scholar
Gudmundsson, H 2003. The policy use of environmental indicators – learning from evaluation research. The Journal of Transdisciplinary Environmental Studies 2, 111.Google Scholar
Langeveld, JWA, Verhagen, A, Neeteson, JJ, Keulen, HV, Conijn, JG, Schils, RLM and Oenema, J 2007. Evaluating farm performance using agri-environmental indicators: recent experiences for nitrogen management in The Netherlands. Journal of Environmental Management 82, 363376.CrossRefGoogle ScholarPubMed
Leip, A, Britz, W and De Vries, V 2011. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI. Environmental Pollution 159, 32433253.CrossRefGoogle ScholarPubMed
Niemeijer, D and de Groot, RS 2008. A conceptual framework for selecting environmental indicator sets. Ecological Indicators 8, 1425.Google Scholar
Oenema, O, Kros, H and De Vries, V 2003. Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. European Journal of Agronomy 20, 316.Google Scholar
Riley, J 2001. The indicator explosion: local needs and international challenges. Agriculture Ecosystems and Environment 87, 119120.Google Scholar
Schröder, JJ, Aarts, HFM, ten Berge, HFM, van Keulen, HV and Neeteson, JJ 2003. An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. European Journal of Agronomy 20, 3344.Google Scholar
Simon, JC, Grignani, C, Jacquet, A, Lecorre, L and Pages, J 2000. Typology of nitrogen balances on a farm scale: research of operating indicators. Agronomie 20, 175195.Google Scholar
Smeets, E and Weterings, R 1999. Environmental indicators: Typology and overview. Copenhagen: EEA (Technical report No 25), 19p.Google Scholar
Topp, CFE, Stockdale, EA, Watson, CA and Rees, RM 2007. Estimating resource use efficiencies in organic agriculture: a review of budgeting approaches used. Journal of the Science of Food and Agriculture 87, 27822790.Google Scholar
Van der Werf, HMG, Kanyarushoki, C and Corson, MS 2011. L’Analyse de Cycle de Vie: un nouveau regard sur les systèmes de production agricole. Innovations Agronomiques 12, 121133.Google Scholar
van der Werf, HGM and Petit, J 2002. Evaluation of environmental impact of agriculture at the farm level: A comparison and analysis of 12 indicator-based methods. Ecosystems & Environment 93, 131145.CrossRefGoogle Scholar
Vertès, F, Bockstaller, C, Espagnol, S, Guichard, L, Petit, J and Raison, C 2010. Stratégies de choix des méthodes et outils d’évaluation environnementale en systèmes d’élevage. In Elevages et Environnement (ed S, Espagnol and P, Leterme), pp. 1564. Editions Quae-Editions Educagri, Versailles.Google Scholar
Watson, CA and Atkinson, D 1999. Using nitrogen budgets to indicate nitrogen use efficiency and losses from whole farm systems: a comparison of three methodological approaches. Nutrient Cycling in Agroecosystems 53, 259267.Google Scholar