Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Martinsson, Per-Gunnar
and
Tropp, Joel A.
2020.
Randomized numerical linear algebra: Foundations and algorithms.
Acta Numerica,
Vol. 29,
Issue. ,
p.
403.
Stoll, Martin
2020.
A literature survey of matrix methods for data science.
GAMM-Mitteilungen,
Vol. 43,
Issue. 3,
Daužickaitė, Ieva
Lawless, Amos S.
Scott, Jennifer A.
and
van Leeuwen, Peter Jan
2021.
Randomised preconditioning for the forcing formulation of weak‐constraint 4D‐Var.
Quarterly Journal of the Royal Meteorological Society,
Vol. 147,
Issue. 740,
p.
3719.
Al Daas, Hussam
Rees, Tyrone
and
Scott, Jennifer
2021.
Two-Level Nyström--Schur Preconditioner for Sparse Symmetric Positive Definite Matrices.
SIAM Journal on Scientific Computing,
Vol. 43,
Issue. 6,
p.
A3837.
Kaloorazi, Maboud F.
Wu, Dan
and
Gao, Guowang
2021.
A Randomized Algorithm for Approximating Truncated SVD.
p.
93.
Teke, Oguzhan
and
Vaidyanathan, P. P.
2021.
Unifying Random-Asynchronous Algorithms for Numerical Methods, Using Switching Systems Theory.
p.
172.
Daužickaitė, Ieva
Lawless, Amos S.
Scott, Jennifer A.
and
van Leeuwen, Peter Jan
2021.
On time‐parallel preconditioning for the state formulation of incremental weak constraint 4D‐Var.
Quarterly Journal of the Royal Meteorological Society,
Vol. 147,
Issue. 740,
p.
3521.
Yao, Yaqiong
and
Wang, HaiYing
2021.
Modern Statistical Methods for Health Research.
p.
223.
Cui, Kangning
and
Plemmons, Robert J.
2021.
Unsupervised Classification of Aviris-NG Hyperspectral Images.
p.
1.
Levis, Aviad
Lee, Daeyoung
Tropp, Joel A.
Gammie, Charles F.
and
Bouman, Katherine L.
2021.
Inference of Black Hole Fluid-Dynamics from Sparse Interferometric Measurements.
p.
2320.
De Vito, Ernesto
Kereta, Zeljko
Naumova, Valeriya
Rosasco, Lorenzo
and
Vigogna, Stefano
2021.
Construction and Monte Carlo Estimation of Wavelet Frames Generated by a Reproducing Kernel.
Journal of Fourier Analysis and Applications,
Vol. 27,
Issue. 2,
Kalantzis, Vassilis
Xi, Yuanzhe
and
Horesh, Lior
2021.
Fast Randomized Non-Hermitian Eigensolvers Based on Rational Filtering and Matrix Partitioning.
SIAM Journal on Scientific Computing,
Vol. 43,
Issue. 5,
p.
S791.
Minster, Rachel
Saibaba, Arvind K.
Kar, Jishnudeep
and
Chakrabortty, Aranya
2021.
Efficient Algorithms for Eigensystem Realization Using Randomized SVD.
SIAM Journal on Matrix Analysis and Applications,
Vol. 42,
Issue. 2,
p.
1045.
O’Leary-Roseberry, Thomas
Du, Xiaosong
Chaudhuri, Anirban
Martins, Joaquim R.R.A.
Willcox, Karen
and
Ghattas, Omar
2022.
Learning high-dimensional parametric maps via reduced basis adaptive residual networks.
Computer Methods in Applied Mechanics and Engineering,
Vol. 402,
Issue. ,
p.
115730.
Zhang, Ke
Li, Fu-Ting
and
Jiang, Xiang-Long
2022.
Multi-step greedy Kaczmarz algorithms with simple random sampling for solving large linear systems.
Computational and Applied Mathematics,
Vol. 41,
Issue. 7,
Sobczyk, Aleksandros
and
Gallopoulos, Efstratios
2022.
pylspack
: Parallel Algorithms and Data Structures for Sketching, Column Subset Selection, Regression, and Leverage Scores
.
ACM Transactions on Mathematical Software,
Vol. 48,
Issue. 4,
p.
1.
Chang, Shih Yu
and
Wei, Yimin
2022.
T-product tensors—part II: tail bounds for sums of random T-product tensors.
Computational and Applied Mathematics,
Vol. 41,
Issue. 3,
Vandecappelle, Michiel
and
De Lathauwer, Lieven
2022.
From multilinear SVD to multilinear UTV decomposition.
Signal Processing,
Vol. 198,
Issue. ,
p.
108575.
Larsen, Brett W.
and
Kolda, Tamara G.
2022.
Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition.
SIAM Journal on Matrix Analysis and Applications,
Vol. 43,
Issue. 3,
p.
1488.
Tropp, Joel A.
2022.
Randomized block Krylov methods for approximating extreme eigenvalues.
Numerische Mathematik,
Vol. 150,
Issue. 1,
p.
217.